1
|
|
|
"""!
|
2
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: X-Means
|
4
|
|
|
@details Based on article description:
|
5
|
|
|
- D.Pelleg, A.Moore. X-means: Extending K-means with Efficient Estimation of the Number of Clusters. 2000.
|
6
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected])
|
8
|
|
|
@date 2014-2018
|
9
|
|
|
@copyright GNU Public License
|
10
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE
|
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
13
|
|
|
it under the terms of the GNU General Public License as published by
|
14
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
15
|
|
|
(at your option) any later version.
|
16
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
20
|
|
|
GNU General Public License for more details.
|
21
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License
|
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
24
|
|
|
@endcond
|
25
|
|
|
|
26
|
|
|
"""
|
27
|
|
|
|
28
|
|
|
|
29
|
|
|
import numpy;
|
|
|
|
|
30
|
|
|
import random;
|
31
|
|
|
|
32
|
|
|
from enum import IntEnum;
|
33
|
|
|
|
34
|
|
|
from math import log;
|
35
|
|
|
|
36
|
|
|
from pyclustering.cluster.encoder import type_encoding;
|
37
|
|
|
from pyclustering.cluster.kmeans import kmeans;
|
38
|
|
|
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer;
|
39
|
|
|
|
40
|
|
|
from pyclustering.core.wrapper import ccore_library;
|
41
|
|
|
|
42
|
|
|
import pyclustering.core.xmeans_wrapper as wrapper;
|
43
|
|
|
|
44
|
|
|
from pyclustering.utils import euclidean_distance_square, euclidean_distance;
|
45
|
|
|
from pyclustering.utils import list_math_addition_number;
|
|
|
|
|
46
|
|
|
|
47
|
|
|
|
48
|
|
|
class splitting_type(IntEnum):
|
49
|
|
|
"""!
|
50
|
|
|
@brief Enumeration of splitting types that can be used as splitting creation of cluster in X-Means algorithm.
|
51
|
|
|
|
52
|
|
|
"""
|
53
|
|
|
|
54
|
|
|
## Bayesian information criterion (BIC) to approximate the correct number of clusters.
|
55
|
|
|
## Kass's formula is used to calculate BIC:
|
56
|
|
|
## \f[BIC(\theta) = L(D) - \frac{1}{2}pln(N)\f]
|
57
|
|
|
##
|
58
|
|
|
## The number of free parameters \f$p\f$ is simply the sum of \f$K - 1\f$ class probabilities, \f$MK\f$ centroid coordinates, and one variance estimate:
|
59
|
|
|
## \f[p = (K - 1) + MK + 1\f]
|
60
|
|
|
##
|
61
|
|
|
## The log-likelihood of the data:
|
62
|
|
|
## \f[L(D) = n_jln(n_j) - n_jln(N) - \frac{n_j}{2}ln(2\pi) - \frac{n_jd}{2}ln(\hat{\sigma}^2) - \frac{n_j - K}{2}\f]
|
63
|
|
|
##
|
64
|
|
|
## The maximum likelihood estimate (MLE) for the variance:
|
65
|
|
|
## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||^2\f]
|
66
|
|
|
BAYESIAN_INFORMATION_CRITERION = 0;
|
67
|
|
|
|
68
|
|
|
## Minimum noiseless description length (MNDL) to approximate the correct number of clusters.
|
69
|
|
|
## Beheshti's formula is used to calculate upper bound:
|
70
|
|
|
## \f[Z = \frac{\sigma^2 \sqrt{2K} }{N}(\sqrt{2K} + \beta) + W - \sigma^2 + \frac{2\alpha\sigma}{\sqrt{N}}\sqrt{\frac{\alpha^2\sigma^2}{N} + W - \left(1 - \frac{K}{N}\right)\frac{\sigma^2}{2}} + \frac{2\alpha^2\sigma^2}{N}\f]
|
71
|
|
|
##
|
72
|
|
|
## where \f$\alpha\f$ and \f$\beta\f$ represent the parameters for validation probability and confidence probability.
|
73
|
|
|
##
|
74
|
|
|
## To improve clustering results some contradiction is introduced:
|
75
|
|
|
## \f[W = \frac{1}{n_j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f]
|
76
|
|
|
## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f]
|
77
|
|
|
MINIMUM_NOISELESS_DESCRIPTION_LENGTH = 1;
|
78
|
|
|
|
79
|
|
|
|
80
|
|
|
class xmeans:
|
81
|
|
|
"""!
|
82
|
|
|
@brief Class represents clustering algorithm X-Means.
|
83
|
|
|
@details X-means clustering method starts with the assumption of having a minimum number of clusters,
|
84
|
|
|
and then dynamically increases them. X-means uses specified splitting criterion to control
|
85
|
|
|
the process of splitting clusters. Method K-Means++ can be used for calculation of initial centers.
|
86
|
|
|
|
87
|
|
|
CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance.
|
88
|
|
|
|
89
|
|
|
CCORE implementation of the algorithm uses thread pool to parallelize the clustering process.
|
90
|
|
|
|
91
|
|
|
Example:
|
92
|
|
|
@code
|
93
|
|
|
# sample for cluster analysis (represented by list)
|
94
|
|
|
sample = read_sample(path_to_sample);
|
95
|
|
|
|
96
|
|
|
# create object of X-Means algorithm that uses CCORE for processing
|
97
|
|
|
# initial centers - optional parameter, if it is None, then random centers will be used by the algorithm.
|
98
|
|
|
# let's avoid random initial centers and initialize them using K-Means++ method:
|
99
|
|
|
initial_centers = kmeans_plusplus_initializer(sample, 2).initialize();
|
100
|
|
|
xmeans_instance = xmeans(sample, initial_centers, ccore = True);
|
101
|
|
|
|
102
|
|
|
# run cluster analysis
|
103
|
|
|
xmeans_instance.process();
|
104
|
|
|
|
105
|
|
|
# obtain results of clustering
|
106
|
|
|
clusters = xmeans_instance.get_clusters();
|
107
|
|
|
|
108
|
|
|
# display allocated clusters
|
109
|
|
|
draw_clusters(sample, clusters);
|
110
|
|
|
@endcode
|
111
|
|
|
|
112
|
|
|
@see center_initializer
|
113
|
|
|
|
114
|
|
|
"""
|
115
|
|
|
|
116
|
|
|
def __init__(self, data, initial_centers = None, kmax = 20, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = True):
|
117
|
|
|
"""!
|
118
|
|
|
@brief Constructor of clustering algorithm X-Means.
|
119
|
|
|
|
120
|
|
|
@param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
|
121
|
|
|
@param[in] initial_centers (list): Initial coordinates of centers of clusters that are represented by list: [center1, center2, ...],
|
122
|
|
|
if it is not specified then X-Means starts from the random center.
|
123
|
|
|
@param[in] kmax (uint): Maximum number of clusters that can be allocated.
|
124
|
|
|
@param[in] tolerance (double): Stop condition for each iteration: if maximum value of change of centers of clusters is less than tolerance than algorithm will stop processing.
|
125
|
|
|
@param[in] criterion (splitting_type): Type of splitting creation.
|
126
|
|
|
@param[in] ccore (bool): Defines should be CCORE (C++ pyclustering library) used instead of Python code or not.
|
127
|
|
|
|
128
|
|
|
"""
|
129
|
|
|
|
130
|
|
|
self.__pointer_data = data;
|
131
|
|
|
self.__clusters = [];
|
132
|
|
|
|
133
|
|
|
if (initial_centers is not None):
|
134
|
|
|
self.__centers = initial_centers[:];
|
135
|
|
|
else:
|
136
|
|
|
self.__centers = [ [random.random() for _ in range(len(data[0])) ] ];
|
137
|
|
|
|
138
|
|
|
self.__kmax = kmax;
|
139
|
|
|
self.__tolerance = tolerance;
|
140
|
|
|
self.__criterion = criterion;
|
141
|
|
|
|
142
|
|
|
self.__ccore = ccore;
|
143
|
|
|
if (self.__ccore):
|
144
|
|
|
self.__ccore = ccore_library.workable();
|
145
|
|
|
|
146
|
|
|
|
147
|
|
|
def process(self):
|
148
|
|
|
"""!
|
149
|
|
|
@brief Performs cluster analysis in line with rules of X-Means algorithm.
|
150
|
|
|
|
151
|
|
|
@remark Results of clustering can be obtained using corresponding gets methods.
|
152
|
|
|
|
153
|
|
|
@see get_clusters()
|
154
|
|
|
@see get_centers()
|
155
|
|
|
|
156
|
|
|
"""
|
157
|
|
|
|
158
|
|
|
if (self.__ccore is True):
|
159
|
|
|
self.__clusters, self.__centers = wrapper.xmeans(self.__pointer_data, self.__centers, self.__kmax, self.__tolerance, self.__criterion);
|
160
|
|
|
|
161
|
|
|
else:
|
162
|
|
|
self.__clusters = [];
|
163
|
|
|
while ( len(self.__centers) <= self.__kmax ):
|
164
|
|
|
current_cluster_number = len(self.__centers);
|
165
|
|
|
|
166
|
|
|
self.__clusters, self.__centers = self.__improve_parameters(self.__centers);
|
167
|
|
|
allocated_centers = self.__improve_structure(self.__clusters, self.__centers);
|
168
|
|
|
|
169
|
|
|
if (current_cluster_number == len(allocated_centers)):
|
170
|
|
|
#if ( (current_cluster_number == len(allocated_centers)) or (len(allocated_centers) > self.__kmax) ):
|
171
|
|
|
break;
|
172
|
|
|
else:
|
173
|
|
|
self.__centers = allocated_centers;
|
174
|
|
|
|
175
|
|
|
self.__clusters, self.__centers = self.__improve_parameters(self.__centers);
|
176
|
|
|
|
177
|
|
|
|
178
|
|
|
def get_clusters(self):
|
179
|
|
|
"""!
|
180
|
|
|
@brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data.
|
181
|
|
|
|
182
|
|
|
@return (list) List of allocated clusters.
|
183
|
|
|
|
184
|
|
|
@see process()
|
185
|
|
|
@see get_centers()
|
186
|
|
|
|
187
|
|
|
"""
|
188
|
|
|
|
189
|
|
|
return self.__clusters;
|
190
|
|
|
|
191
|
|
|
|
192
|
|
|
def get_centers(self):
|
193
|
|
|
"""!
|
194
|
|
|
@brief Returns list of centers for allocated clusters.
|
195
|
|
|
|
196
|
|
|
@return (list) List of centers for allocated clusters.
|
197
|
|
|
|
198
|
|
|
@see process()
|
199
|
|
|
@see get_clusters()
|
200
|
|
|
|
201
|
|
|
"""
|
202
|
|
|
|
203
|
|
|
return self.__centers;
|
204
|
|
|
|
205
|
|
|
|
206
|
|
|
def get_cluster_encoding(self):
|
207
|
|
|
"""!
|
208
|
|
|
@brief Returns clustering result representation type that indicate how clusters are encoded.
|
209
|
|
|
|
210
|
|
|
@return (type_encoding) Clustering result representation.
|
211
|
|
|
|
212
|
|
|
@see get_clusters()
|
213
|
|
|
|
214
|
|
|
"""
|
215
|
|
|
|
216
|
|
|
return type_encoding.CLUSTER_INDEX_LIST_SEPARATION;
|
217
|
|
|
|
218
|
|
|
|
219
|
|
|
def __improve_parameters(self, centers, available_indexes = None):
|
220
|
|
|
"""!
|
221
|
|
|
@brief Performs k-means clustering in the specified region.
|
222
|
|
|
|
223
|
|
|
@param[in] centers (list): Centers of clusters.
|
224
|
|
|
@param[in] available_indexes (list): Indexes that defines which points can be used for k-means clustering, if None - then all points are used.
|
225
|
|
|
|
226
|
|
|
@return (list) List of allocated clusters, each cluster contains indexes of objects in list of data.
|
227
|
|
|
|
228
|
|
|
"""
|
229
|
|
|
|
230
|
|
|
if (available_indexes and len(available_indexes) == 1):
|
231
|
|
|
index_center = available_indexes[0];
|
232
|
|
|
return ([ available_indexes ], self.__pointer_data[index_center]);
|
233
|
|
|
|
234
|
|
|
local_data = self.__pointer_data;
|
235
|
|
|
if available_indexes:
|
236
|
|
|
local_data = [ self.__pointer_data[i] for i in available_indexes ];
|
237
|
|
|
|
238
|
|
|
local_centers = centers;
|
239
|
|
|
if centers is None:
|
240
|
|
|
local_centers = kmeans_plusplus_initializer(local_data, 2, kmeans_plusplus_initializer.FARTHEST_CENTER_CANDIDATE).initialize();
|
241
|
|
|
|
242
|
|
|
kmeans_instance = kmeans(local_data, local_centers, tolerance=self.__tolerance, ccore=False);
|
243
|
|
|
kmeans_instance.process();
|
244
|
|
|
|
245
|
|
|
local_centers = kmeans_instance.get_centers();
|
246
|
|
|
|
247
|
|
|
clusters = kmeans_instance.get_clusters();
|
248
|
|
|
if (available_indexes):
|
249
|
|
|
clusters = self.__local_to_global_clusters(clusters, available_indexes);
|
250
|
|
|
|
251
|
|
|
return (clusters, local_centers);
|
252
|
|
|
|
253
|
|
|
|
254
|
|
|
def __local_to_global_clusters(self, local_clusters, available_indexes):
|
255
|
|
|
"""!
|
256
|
|
|
@brief Converts clusters in local region define by 'available_indexes' to global clusters.
|
257
|
|
|
|
258
|
|
|
@param[in] local_clusters (list): Local clusters in specific region.
|
259
|
|
|
@param[in] available_indexes (list): Map between local and global point's indexes.
|
260
|
|
|
|
261
|
|
|
@return Global clusters.
|
262
|
|
|
|
263
|
|
|
"""
|
264
|
|
|
|
265
|
|
|
clusters = [];
|
266
|
|
|
for local_cluster in local_clusters:
|
267
|
|
|
current_cluster = [];
|
268
|
|
|
for index_point in local_cluster:
|
269
|
|
|
current_cluster.append(available_indexes[index_point]);
|
270
|
|
|
|
271
|
|
|
clusters.append(current_cluster);
|
272
|
|
|
|
273
|
|
|
return clusters;
|
274
|
|
|
|
275
|
|
|
|
276
|
|
|
def __improve_structure(self, clusters, centers):
|
277
|
|
|
"""!
|
278
|
|
|
@brief Check for best structure: divides each cluster into two and checks for best results using splitting criterion.
|
279
|
|
|
|
280
|
|
|
@param[in] clusters (list): Clusters that have been allocated (each cluster contains indexes of points from data).
|
281
|
|
|
@param[in] centers (list): Centers of clusters.
|
282
|
|
|
|
283
|
|
|
@return (list) Allocated centers for clustering.
|
284
|
|
|
|
285
|
|
|
"""
|
286
|
|
|
|
287
|
|
|
allocated_centers = [];
|
288
|
|
|
amount_free_centers = self.__kmax - len(centers);
|
289
|
|
|
|
290
|
|
|
for index_cluster in range(len(clusters)):
|
291
|
|
|
# solve k-means problem for children where data of parent are used.
|
292
|
|
|
(parent_child_clusters, parent_child_centers) = self.__improve_parameters(None, clusters[index_cluster]);
|
293
|
|
|
|
294
|
|
|
# If it's possible to split current data
|
295
|
|
|
if (len(parent_child_clusters) > 1):
|
296
|
|
|
# Calculate splitting criterion
|
297
|
|
|
parent_scores = self.__splitting_criterion([ clusters[index_cluster] ], [ centers[index_cluster] ]);
|
298
|
|
|
child_scores = self.__splitting_criterion([ parent_child_clusters[0], parent_child_clusters[1] ], parent_child_centers);
|
299
|
|
|
|
300
|
|
|
split_require = False;
|
301
|
|
|
|
302
|
|
|
# Reallocate number of centers (clusters) in line with scores
|
303
|
|
|
if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION):
|
304
|
|
|
if (parent_scores < child_scores): split_require = True;
|
305
|
|
|
|
306
|
|
|
elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH):
|
307
|
|
|
# If its score for the split structure with two children is smaller than that for the parent structure,
|
308
|
|
|
# then representing the data samples with two clusters is more accurate in comparison to a single parent cluster.
|
309
|
|
|
if (parent_scores > child_scores): split_require = True;
|
310
|
|
|
|
311
|
|
|
if ( (split_require is True) and (amount_free_centers > 0) ):
|
312
|
|
|
allocated_centers.append(parent_child_centers[0]);
|
313
|
|
|
allocated_centers.append(parent_child_centers[1]);
|
314
|
|
|
|
315
|
|
|
amount_free_centers -= 1;
|
316
|
|
|
else:
|
317
|
|
|
allocated_centers.append(centers[index_cluster]);
|
318
|
|
|
|
319
|
|
|
|
320
|
|
|
else:
|
321
|
|
|
allocated_centers.append(centers[index_cluster]);
|
322
|
|
|
|
323
|
|
|
return allocated_centers;
|
324
|
|
|
|
325
|
|
|
|
326
|
|
|
def __splitting_criterion(self, clusters, centers):
|
327
|
|
|
"""!
|
328
|
|
|
@brief Calculates splitting criterion for input clusters.
|
329
|
|
|
|
330
|
|
|
@param[in] clusters (list): Clusters for which splitting criterion should be calculated.
|
331
|
|
|
@param[in] centers (list): Centers of the clusters.
|
332
|
|
|
|
333
|
|
|
@return (double) Returns splitting criterion. High value of splitting cretion means that current structure is much better.
|
334
|
|
|
|
335
|
|
|
@see __bayesian_information_criterion(clusters, centers)
|
336
|
|
|
@see __minimum_noiseless_description_length(clusters, centers)
|
337
|
|
|
|
338
|
|
|
"""
|
339
|
|
|
|
340
|
|
|
if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION):
|
341
|
|
|
return self.__bayesian_information_criterion(clusters, centers);
|
342
|
|
|
|
343
|
|
|
elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH):
|
344
|
|
|
return self.__minimum_noiseless_description_length(clusters, centers);
|
345
|
|
|
|
346
|
|
|
else:
|
347
|
|
|
assert 0;
|
348
|
|
|
|
349
|
|
|
|
350
|
|
|
def __minimum_noiseless_description_length(self, clusters, centers):
|
351
|
|
|
"""!
|
352
|
|
|
@brief Calculates splitting criterion for input clusters using minimum noiseless description length criterion.
|
353
|
|
|
|
354
|
|
|
@param[in] clusters (list): Clusters for which splitting criterion should be calculated.
|
355
|
|
|
@param[in] centers (list): Centers of the clusters.
|
356
|
|
|
|
357
|
|
|
@return (double) Returns splitting criterion in line with bayesian information criterion.
|
358
|
|
|
Low value of splitting cretion means that current structure is much better.
|
359
|
|
|
|
360
|
|
|
@see __bayesian_information_criterion(clusters, centers)
|
361
|
|
|
|
362
|
|
|
"""
|
363
|
|
|
|
364
|
|
|
scores = float('inf');
|
365
|
|
|
|
366
|
|
|
W = 0.0;
|
367
|
|
|
K = len(clusters);
|
368
|
|
|
N = 0.0;
|
369
|
|
|
|
370
|
|
|
sigma_sqrt = 0.0;
|
371
|
|
|
|
372
|
|
|
alpha = 0.9;
|
373
|
|
|
betta = 0.9;
|
374
|
|
|
|
375
|
|
|
for index_cluster in range(0, len(clusters), 1):
|
376
|
|
|
Ni = len(clusters[index_cluster]);
|
377
|
|
|
if (Ni == 0):
|
378
|
|
|
return float('inf');
|
379
|
|
|
|
380
|
|
|
Wi = 0.0;
|
381
|
|
|
for index_object in clusters[index_cluster]:
|
382
|
|
|
# euclidean_distance_square should be used in line with paper, but in this case results are
|
383
|
|
|
# very poor, therefore square root is used to improved.
|
384
|
|
|
Wi += euclidean_distance(self.__pointer_data[index_object], centers[index_cluster]);
|
385
|
|
|
|
386
|
|
|
sigma_sqrt += Wi;
|
387
|
|
|
W += Wi / Ni;
|
388
|
|
|
N += Ni;
|
389
|
|
|
|
390
|
|
|
if (N - K > 0):
|
391
|
|
|
sigma_sqrt /= (N - K);
|
392
|
|
|
sigma = sigma_sqrt ** 0.5;
|
393
|
|
|
|
394
|
|
|
Kw = (1.0 - K / N) * sigma_sqrt;
|
395
|
|
|
Ks = ( 2.0 * alpha * sigma / (N ** 0.5) ) * ( (alpha ** 2.0) * sigma_sqrt / N + W - Kw / 2.0 ) ** 0.5;
|
396
|
|
|
|
397
|
|
|
scores = sigma_sqrt * (2 * K)**0.5 * ((2 * K)**0.5 + betta) / N + W - sigma_sqrt + Ks + 2 * alpha**0.5 * sigma_sqrt / N
|
398
|
|
|
|
399
|
|
|
return scores;
|
400
|
|
|
|
401
|
|
|
|
402
|
|
|
def __bayesian_information_criterion(self, clusters, centers):
|
403
|
|
|
"""!
|
404
|
|
|
@brief Calculates splitting criterion for input clusters using bayesian information criterion.
|
405
|
|
|
|
406
|
|
|
@param[in] clusters (list): Clusters for which splitting criterion should be calculated.
|
407
|
|
|
@param[in] centers (list): Centers of the clusters.
|
408
|
|
|
|
409
|
|
|
@return (double) Splitting criterion in line with bayesian information criterion.
|
410
|
|
|
High value of splitting criterion means that current structure is much better.
|
411
|
|
|
|
412
|
|
|
@see __minimum_noiseless_description_length(clusters, centers)
|
413
|
|
|
|
414
|
|
|
"""
|
415
|
|
|
|
416
|
|
|
scores = [float('inf')] * len(clusters) # splitting criterion
|
417
|
|
|
dimension = len(self.__pointer_data[0]);
|
418
|
|
|
|
419
|
|
|
# estimation of the noise variance in the data set
|
420
|
|
|
sigma_sqrt = 0.0;
|
421
|
|
|
K = len(clusters);
|
422
|
|
|
N = 0.0;
|
423
|
|
|
|
424
|
|
|
for index_cluster in range(0, len(clusters), 1):
|
425
|
|
|
for index_object in clusters[index_cluster]:
|
426
|
|
|
sigma_sqrt += euclidean_distance_square(self.__pointer_data[index_object], centers[index_cluster]);
|
427
|
|
|
|
428
|
|
|
N += len(clusters[index_cluster]);
|
429
|
|
|
|
430
|
|
|
if (N - K > 0):
|
431
|
|
|
sigma_sqrt /= (N - K);
|
432
|
|
|
p = (K - 1) + dimension * K + 1;
|
433
|
|
|
|
434
|
|
|
# in case of the same points, sigma_sqrt can be zero (issue: #407)
|
435
|
|
|
sigma_multiplier = 0.0;
|
436
|
|
|
if (sigma_sqrt <= 0.0):
|
437
|
|
|
sigma_multiplier = float('-inf');
|
438
|
|
|
else:
|
439
|
|
|
sigma_multiplier = dimension * 0.5 * log(sigma_sqrt);
|
440
|
|
|
|
441
|
|
|
# splitting criterion
|
442
|
|
|
for index_cluster in range(0, len(clusters), 1):
|
443
|
|
|
n = len(clusters[index_cluster]);
|
444
|
|
|
|
445
|
|
|
L = n * log(n) - n * log(N) - n * 0.5 * log(2.0 * numpy.pi) - n * sigma_multiplier - (n - K) * 0.5;
|
446
|
|
|
|
447
|
|
|
# BIC calculation
|
448
|
|
|
scores[index_cluster] = L - p * 0.5 * log(N);
|
449
|
|
|
|
450
|
|
|
return sum(scores);
|
451
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.