Total Complexity | 50 |
Total Lines | 390 |
Duplicated Lines | 14.36 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like xmeans often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """! |
||
76 | class xmeans: |
||
77 | """! |
||
78 | @brief Class represents clustering algorithm X-Means. |
||
79 | @details X-means clustering method starts with the assumption of having a minimum number of clusters, |
||
80 | and then dynamically increases them. X-means uses specified splitting criterion to control |
||
81 | the process of splitting clusters. |
||
82 | |||
83 | Example: |
||
84 | @code |
||
85 | # sample for cluster analysis (represented by list) |
||
86 | sample = read_sample(path_to_sample); |
||
87 | |||
88 | # create object of X-Means algorithm that uses CCORE for processing |
||
89 | # initial centers - optional parameter, if it is None, then random center will be used by the algorithm |
||
90 | initial_centers = [ [0.0, 0.5] ]; |
||
91 | xmeans_instance = xmeans(sample, initial_centers, ccore = True); |
||
92 | |||
93 | # run cluster analysis |
||
94 | xmeans_instance.process(); |
||
95 | |||
96 | # obtain results of clustering |
||
97 | clusters = xmeans_instance.get_clusters(); |
||
98 | |||
99 | # display allocated clusters |
||
100 | draw_clusters(sample, clusters); |
||
101 | @endcode |
||
102 | |||
103 | """ |
||
104 | |||
105 | def __init__(self, data, initial_centers = None, kmax = 20, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False): |
||
106 | """! |
||
107 | @brief Constructor of clustering algorithm X-Means. |
||
108 | |||
109 | @param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple. |
||
110 | @param[in] initial_centers (list): Initial coordinates of centers of clusters that are represented by list: [center1, center2, ...], |
||
111 | if it is not specified then X-Means starts from the random center. |
||
112 | @param[in] kmax (uint): Maximum number of clusters that can be allocated. |
||
113 | @param[in] tolerance (double): Stop condition for each iteration: if maximum value of change of centers of clusters is less than tolerance than algorithm will stop processing. |
||
114 | @param[in] criterion (splitting_type): Type of splitting creation. |
||
115 | @param[in] ccore (bool): Defines should be CCORE (C++ pyclustering library) used instead of Python code or not. |
||
116 | |||
117 | """ |
||
118 | |||
119 | self.__pointer_data = data; |
||
120 | self.__clusters = []; |
||
121 | |||
122 | if (initial_centers is not None): |
||
123 | self.__centers = initial_centers[:]; |
||
124 | else: |
||
125 | self.__centers = [ [random.random() for _ in range(len(data[0])) ] ]; |
||
126 | |||
127 | self.__kmax = kmax; |
||
128 | self.__tolerance = tolerance; |
||
129 | self.__criterion = criterion; |
||
130 | |||
131 | self.__ccore = ccore; |
||
132 | |||
133 | def process(self): |
||
134 | """! |
||
135 | @brief Performs cluster analysis in line with rules of X-Means algorithm. |
||
136 | |||
137 | @remark Results of clustering can be obtained using corresponding gets methods. |
||
138 | |||
139 | @see get_clusters() |
||
140 | @see get_centers() |
||
141 | |||
142 | """ |
||
143 | |||
144 | if (self.__ccore is True): |
||
145 | self.__clusters = wrapper.xmeans(self.__pointer_data, self.__centers, self.__kmax, self.__tolerance, self.__criterion); |
||
146 | self.__clusters = [ cluster for cluster in self.__clusters if len(cluster) > 0 ]; |
||
147 | |||
148 | self.__centers = self.__update_centers(self.__clusters); |
||
149 | else: |
||
150 | self.__clusters = []; |
||
151 | while ( len(self.__centers) < self.__kmax ): |
||
152 | current_cluster_number = len(self.__centers); |
||
153 | |||
154 | (self.__clusters, self.__centers) = self.__improve_parameters(self.__centers); |
||
155 | allocated_centers = self.__improve_structure(self.__clusters, self.__centers); |
||
156 | |||
157 | if ( (current_cluster_number == len(allocated_centers)) ): |
||
158 | break; |
||
159 | else: |
||
160 | self.__centers = allocated_centers; |
||
161 | |||
162 | |||
163 | def get_clusters(self): |
||
164 | """! |
||
165 | @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data. |
||
166 | |||
167 | @return (list) List of allocated clusters. |
||
168 | |||
169 | @see process() |
||
170 | @see get_centers() |
||
171 | |||
172 | """ |
||
173 | |||
174 | return self.__clusters; |
||
175 | |||
176 | |||
177 | def get_centers(self): |
||
178 | """! |
||
179 | @brief Returns list of centers for allocated clusters. |
||
180 | |||
181 | @return (list) List of centers for allocated clusters. |
||
182 | |||
183 | @see process() |
||
184 | @see get_clusters() |
||
185 | |||
186 | """ |
||
187 | |||
188 | return self.__centers; |
||
189 | |||
190 | |||
191 | def get_cluster_encoding(self): |
||
192 | """! |
||
193 | @brief Returns clustering result representation type that indicate how clusters are encoded. |
||
194 | |||
195 | @return (type_encoding) Clustering result representation. |
||
196 | |||
197 | @see get_clusters() |
||
198 | |||
199 | """ |
||
200 | |||
201 | return type_encoding.CLUSTER_INDEX_LIST_SEPARATION; |
||
202 | |||
203 | |||
204 | def __improve_parameters(self, centers, available_indexes = None): |
||
205 | """! |
||
206 | @brief Performs k-means clustering in the specified region. |
||
207 | |||
208 | @param[in] centers (list): Centers of clusters. |
||
209 | @param[in] available_indexes (list): Indexes that defines which points can be used for k-means clustering, if None - then all points are used. |
||
210 | |||
211 | @return (list) List of allocated clusters, each cluster contains indexes of objects in list of data. |
||
212 | |||
213 | """ |
||
214 | |||
215 | changes = numpy.Inf; |
||
216 | |||
217 | stop_condition = self.__tolerance * self.__tolerance; # Fast solution |
||
218 | |||
219 | clusters = []; |
||
220 | |||
221 | while (changes > stop_condition): |
||
222 | clusters = self.__update_clusters(centers, available_indexes); |
||
223 | clusters = [ cluster for cluster in clusters if len(cluster) > 0 ]; |
||
224 | |||
225 | updated_centers = self.__update_centers(clusters); |
||
226 | |||
227 | changes = max([euclidean_distance_sqrt(centers[index], updated_centers[index]) for index in range(len(updated_centers))]); # Fast solution |
||
228 | |||
229 | centers = updated_centers; |
||
230 | |||
231 | return (clusters, centers); |
||
232 | |||
233 | |||
234 | def __improve_structure(self, clusters, centers): |
||
235 | """! |
||
236 | @brief Check for best structure: divides each cluster into two and checks for best results using splitting criterion. |
||
237 | |||
238 | @param[in] clusters (list): Clusters that have been allocated (each cluster contains indexes of points from data). |
||
239 | @param[in] centers (list): Centers of clusters. |
||
240 | |||
241 | @return (list) Allocated centers for clustering. |
||
242 | |||
243 | """ |
||
244 | |||
245 | difference = 0.001; |
||
246 | |||
247 | allocated_centers = []; |
||
248 | |||
249 | for index_cluster in range(len(clusters)): |
||
250 | # split cluster into two child clusters |
||
251 | parent_child_centers = []; |
||
252 | parent_child_centers.append(list_math_addition_number(centers[index_cluster], -difference)); |
||
253 | parent_child_centers.append(list_math_addition_number(centers[index_cluster], difference)); |
||
254 | |||
255 | # solve k-means problem for children where data of parent are used. |
||
256 | (parent_child_clusters, parent_child_centers) = self.__improve_parameters(parent_child_centers, clusters[index_cluster]); |
||
257 | |||
258 | # If it's possible to split current data |
||
259 | if (len(parent_child_clusters) > 1): |
||
260 | # Calculate splitting criterion |
||
261 | parent_scores = self.__splitting_criterion([ clusters[index_cluster] ], [ centers[index_cluster] ]); |
||
262 | child_scores = self.__splitting_criterion([ parent_child_clusters[0], parent_child_clusters[1] ], parent_child_centers); |
||
263 | |||
264 | split_require = False; |
||
265 | |||
266 | # Reallocate number of centers (clusters) in line with scores |
||
267 | if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): |
||
268 | if (parent_scores < child_scores): split_require = True; |
||
269 | |||
270 | elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): |
||
271 | # If its score for the split structure with two children is smaller than that for the parent structure, |
||
272 | # then representing the data samples with two clusters is more accurate in comparison to a single parent cluster. |
||
273 | if (parent_scores > child_scores): split_require = True; |
||
274 | |||
275 | if (split_require is True): |
||
276 | allocated_centers.append(parent_child_centers[0]); |
||
277 | allocated_centers.append(parent_child_centers[1]); |
||
278 | else: |
||
279 | allocated_centers.append(centers[index_cluster]); |
||
280 | |||
281 | |||
282 | else: |
||
283 | allocated_centers.append(centers[index_cluster]); |
||
284 | |||
285 | return allocated_centers; |
||
286 | |||
287 | |||
288 | def __splitting_criterion(self, clusters, centers): |
||
289 | """! |
||
290 | @brief Calculates splitting criterion for input clusters. |
||
291 | |||
292 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
293 | @param[in] centers (list): Centers of the clusters. |
||
294 | |||
295 | @return (double) Returns splitting criterion. High value of splitting cretion means that current structure is much better. |
||
296 | |||
297 | @see __bayesian_information_criterion(clusters, centers) |
||
298 | @see __minimum_noiseless_description_length(clusters, centers) |
||
299 | |||
300 | """ |
||
301 | |||
302 | if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): |
||
303 | return self.__bayesian_information_criterion(clusters, centers); |
||
304 | |||
305 | elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): |
||
306 | return self.__minimum_noiseless_description_length(clusters, centers); |
||
307 | |||
308 | else: |
||
309 | assert 0; |
||
310 | |||
311 | |||
312 | def __minimum_noiseless_description_length(self, clusters, centers): |
||
313 | """! |
||
314 | @brief Calculates splitting criterion for input clusters using minimum noiseless description length criterion. |
||
315 | |||
316 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
317 | @param[in] centers (list): Centers of the clusters. |
||
318 | |||
319 | @return (double) Returns splitting criterion in line with bayesian information criterion. |
||
320 | Low value of splitting cretion means that current structure is much better. |
||
321 | |||
322 | @see __bayesian_information_criterion(clusters, centers) |
||
323 | |||
324 | """ |
||
325 | |||
326 | scores = float('inf'); |
||
327 | |||
328 | W = 0.0; |
||
329 | K = len(clusters); |
||
330 | N = 0.0; |
||
331 | |||
332 | sigma_sqrt = 0.0; |
||
333 | |||
334 | alpha = 0.9; |
||
335 | betta = 0.9; |
||
336 | |||
337 | for index_cluster in range(0, len(clusters), 1): |
||
338 | Ni = len(clusters[index_cluster]); |
||
339 | if (Ni == 0): |
||
340 | return float('inf'); |
||
341 | |||
342 | Wi = 0.0; |
||
343 | for index_object in clusters[index_cluster]: |
||
344 | # euclidean_distance_sqrt should be used in line with paper, but in this case results are |
||
345 | # very poor, therefore square root is used to improved. |
||
346 | Wi += euclidean_distance(self.__pointer_data[index_object], centers[index_cluster]); |
||
347 | |||
348 | sigma_sqrt += Wi; |
||
349 | W += Wi / Ni; |
||
350 | N += Ni; |
||
351 | |||
352 | if (N - K > 0): |
||
353 | sigma_sqrt /= (N - K); |
||
354 | sigma = sigma_sqrt ** 0.5; |
||
355 | |||
356 | Kw = (1.0 - K / N) * sigma_sqrt; |
||
357 | Ks = ( 2.0 * alpha * sigma / (N ** 0.5) ) * ( (alpha ** 2.0) * sigma_sqrt / N + W - Kw / 2.0 ) ** 0.5; |
||
358 | |||
359 | scores = sigma_sqrt * (2 * K)**0.5 * ((2 * K)**0.5 + betta) / N + W - sigma_sqrt + Ks + 2 * alpha**0.5 * sigma_sqrt / N |
||
360 | |||
361 | View Code Duplication | return scores; |
|
362 | |||
363 | |||
364 | def __bayesian_information_criterion(self, clusters, centers): |
||
365 | """! |
||
366 | @brief Calculates splitting criterion for input clusters using bayesian information criterion. |
||
367 | |||
368 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
369 | @param[in] centers (list): Centers of the clusters. |
||
370 | |||
371 | @return (double) Splitting criterion in line with bayesian information criterion. |
||
372 | High value of splitting criterion means that current structure is much better. |
||
373 | |||
374 | @see __minimum_noiseless_description_length(clusters, centers) |
||
375 | |||
376 | """ |
||
377 | |||
378 | scores = [float('inf')] * len(clusters) # splitting criterion |
||
379 | dimension = len(self.__pointer_data[0]); |
||
380 | |||
381 | # estimation of the noise variance in the data set |
||
382 | sigma_sqrt = 0.0; |
||
383 | K = len(clusters); |
||
384 | N = 0.0; |
||
385 | |||
386 | for index_cluster in range(0, len(clusters), 1): |
||
387 | for index_object in clusters[index_cluster]: |
||
388 | sigma_sqrt += euclidean_distance_sqrt(self.__pointer_data[index_object], centers[index_cluster]); |
||
389 | |||
390 | N += len(clusters[index_cluster]); |
||
391 | |||
392 | if (N - K > 0): |
||
393 | sigma_sqrt /= (N - K); |
||
394 | p = (K - 1) + dimension * K + 1; |
||
395 | |||
396 | # splitting criterion |
||
397 | View Code Duplication | for index_cluster in range(0, len(clusters), 1): |
|
398 | n = len(clusters[index_cluster]); |
||
399 | |||
400 | L = n * log(n) - n * log(N) - n * 0.5 * log(2.0 * numpy.pi) - n * dimension * 0.5 * log(sigma_sqrt) - (n - K) * 0.5; |
||
401 | |||
402 | # BIC calculation |
||
403 | scores[index_cluster] = L - p * 0.5 * log(N); |
||
404 | |||
405 | return sum(scores); |
||
406 | |||
407 | |||
408 | def __update_clusters(self, centers, available_indexes = None): |
||
409 | """! |
||
410 | @brief Calculates Euclidean distance to each point from the each cluster. |
||
411 | Nearest points are captured by according clusters and as a result clusters are updated. |
||
412 | |||
413 | @param[in] centers (list): Coordinates of centers of clusters that are represented by list: [center1, center2, ...]. |
||
414 | @param[in] available_indexes (list): Indexes that defines which points can be used from imput data, if None - then all points are used. |
||
415 | |||
416 | @return (list) Updated clusters. |
||
417 | |||
418 | """ |
||
419 | |||
420 | bypass = None; |
||
421 | if (available_indexes is None): |
||
422 | bypass = range(len(self.__pointer_data)); |
||
423 | else: |
||
424 | bypass = available_indexes; |
||
425 | |||
426 | clusters = [[] for i in range(len(centers))]; |
||
427 | for index_point in bypass: |
||
428 | index_optim = -1; |
||
429 | dist_optim = 0.0; |
||
430 | |||
431 | for index in range(len(centers)): |
||
432 | # dist = euclidean_distance(data[index_point], centers[index]); # Slow solution |
||
433 | dist = euclidean_distance_sqrt(self.__pointer_data[index_point], centers[index]); # Fast solution |
||
434 | |||
435 | if ( (dist < dist_optim) or (index is 0)): |
||
436 | index_optim = index; |
||
437 | dist_optim = dist; |
||
438 | |||
439 | clusters[index_optim].append(index_point); |
||
440 | |||
441 | return clusters; |
||
442 | |||
443 | |||
444 | def __update_centers(self, clusters): |
||
445 | """! |
||
446 | @brief Updates centers of clusters in line with contained objects. |
||
447 | |||
448 | @param[in] clusters (list): Clusters that contain indexes of objects from data. |
||
449 | |||
450 | @return (list) Updated centers. |
||
451 | |||
452 | """ |
||
453 | |||
454 | centers = [[] for i in range(len(clusters))]; |
||
455 | dimension = len(self.__pointer_data[0]) |
||
456 | |||
457 | for index in range(len(clusters)): |
||
458 | point_sum = [0.0] * dimension; |
||
459 | |||
460 | for index_point in clusters[index]: |
||
461 | point_sum = list_math_addition(point_sum, self.__pointer_data[index_point]); |
||
462 | |||
463 | centers[index] = list_math_division_number(point_sum, len(clusters[index])); |
||
464 | |||
465 | return centers; |
||
466 |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.