| Total Complexity | 50 |
| Total Lines | 390 |
| Duplicated Lines | 14.36 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like xmeans often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """! |
||
| 76 | class xmeans: |
||
| 77 | """! |
||
| 78 | @brief Class represents clustering algorithm X-Means. |
||
| 79 | @details X-means clustering method starts with the assumption of having a minimum number of clusters, |
||
| 80 | and then dynamically increases them. X-means uses specified splitting criterion to control |
||
| 81 | the process of splitting clusters. |
||
| 82 | |||
| 83 | Example: |
||
| 84 | @code |
||
| 85 | # sample for cluster analysis (represented by list) |
||
| 86 | sample = read_sample(path_to_sample); |
||
| 87 | |||
| 88 | # create object of X-Means algorithm that uses CCORE for processing |
||
| 89 | # initial centers - optional parameter, if it is None, then random center will be used by the algorithm |
||
| 90 | initial_centers = [ [0.0, 0.5] ]; |
||
| 91 | xmeans_instance = xmeans(sample, initial_centers, ccore = True); |
||
| 92 | |||
| 93 | # run cluster analysis |
||
| 94 | xmeans_instance.process(); |
||
| 95 | |||
| 96 | # obtain results of clustering |
||
| 97 | clusters = xmeans_instance.get_clusters(); |
||
| 98 | |||
| 99 | # display allocated clusters |
||
| 100 | draw_clusters(sample, clusters); |
||
| 101 | @endcode |
||
| 102 | |||
| 103 | """ |
||
| 104 | |||
| 105 | def __init__(self, data, initial_centers = None, kmax = 20, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False): |
||
| 106 | """! |
||
| 107 | @brief Constructor of clustering algorithm X-Means. |
||
| 108 | |||
| 109 | @param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple. |
||
| 110 | @param[in] initial_centers (list): Initial coordinates of centers of clusters that are represented by list: [center1, center2, ...], |
||
| 111 | if it is not specified then X-Means starts from the random center. |
||
| 112 | @param[in] kmax (uint): Maximum number of clusters that can be allocated. |
||
| 113 | @param[in] tolerance (double): Stop condition for each iteration: if maximum value of change of centers of clusters is less than tolerance than algorithm will stop processing. |
||
| 114 | @param[in] criterion (splitting_type): Type of splitting creation. |
||
| 115 | @param[in] ccore (bool): Defines should be CCORE (C++ pyclustering library) used instead of Python code or not. |
||
| 116 | |||
| 117 | """ |
||
| 118 | |||
| 119 | self.__pointer_data = data; |
||
| 120 | self.__clusters = []; |
||
| 121 | |||
| 122 | if (initial_centers is not None): |
||
| 123 | self.__centers = initial_centers[:]; |
||
| 124 | else: |
||
| 125 | self.__centers = [ [random.random() for _ in range(len(data[0])) ] ]; |
||
| 126 | |||
| 127 | self.__kmax = kmax; |
||
| 128 | self.__tolerance = tolerance; |
||
| 129 | self.__criterion = criterion; |
||
| 130 | |||
| 131 | self.__ccore = ccore; |
||
| 132 | |||
| 133 | def process(self): |
||
| 134 | """! |
||
| 135 | @brief Performs cluster analysis in line with rules of X-Means algorithm. |
||
| 136 | |||
| 137 | @remark Results of clustering can be obtained using corresponding gets methods. |
||
| 138 | |||
| 139 | @see get_clusters() |
||
| 140 | @see get_centers() |
||
| 141 | |||
| 142 | """ |
||
| 143 | |||
| 144 | if (self.__ccore is True): |
||
| 145 | self.__clusters = wrapper.xmeans(self.__pointer_data, self.__centers, self.__kmax, self.__tolerance, self.__criterion); |
||
| 146 | self.__clusters = [ cluster for cluster in self.__clusters if len(cluster) > 0 ]; |
||
| 147 | |||
| 148 | self.__centers = self.__update_centers(self.__clusters); |
||
| 149 | else: |
||
| 150 | self.__clusters = []; |
||
| 151 | while ( len(self.__centers) < self.__kmax ): |
||
| 152 | current_cluster_number = len(self.__centers); |
||
| 153 | |||
| 154 | (self.__clusters, self.__centers) = self.__improve_parameters(self.__centers); |
||
| 155 | allocated_centers = self.__improve_structure(self.__clusters, self.__centers); |
||
| 156 | |||
| 157 | if ( (current_cluster_number == len(allocated_centers)) ): |
||
| 158 | break; |
||
| 159 | else: |
||
| 160 | self.__centers = allocated_centers; |
||
| 161 | |||
| 162 | |||
| 163 | def get_clusters(self): |
||
| 164 | """! |
||
| 165 | @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data. |
||
| 166 | |||
| 167 | @return (list) List of allocated clusters. |
||
| 168 | |||
| 169 | @see process() |
||
| 170 | @see get_centers() |
||
| 171 | |||
| 172 | """ |
||
| 173 | |||
| 174 | return self.__clusters; |
||
| 175 | |||
| 176 | |||
| 177 | def get_centers(self): |
||
| 178 | """! |
||
| 179 | @brief Returns list of centers for allocated clusters. |
||
| 180 | |||
| 181 | @return (list) List of centers for allocated clusters. |
||
| 182 | |||
| 183 | @see process() |
||
| 184 | @see get_clusters() |
||
| 185 | |||
| 186 | """ |
||
| 187 | |||
| 188 | return self.__centers; |
||
| 189 | |||
| 190 | |||
| 191 | def get_cluster_encoding(self): |
||
| 192 | """! |
||
| 193 | @brief Returns clustering result representation type that indicate how clusters are encoded. |
||
| 194 | |||
| 195 | @return (type_encoding) Clustering result representation. |
||
| 196 | |||
| 197 | @see get_clusters() |
||
| 198 | |||
| 199 | """ |
||
| 200 | |||
| 201 | return type_encoding.CLUSTER_INDEX_LIST_SEPARATION; |
||
| 202 | |||
| 203 | |||
| 204 | def __improve_parameters(self, centers, available_indexes = None): |
||
| 205 | """! |
||
| 206 | @brief Performs k-means clustering in the specified region. |
||
| 207 | |||
| 208 | @param[in] centers (list): Centers of clusters. |
||
| 209 | @param[in] available_indexes (list): Indexes that defines which points can be used for k-means clustering, if None - then all points are used. |
||
| 210 | |||
| 211 | @return (list) List of allocated clusters, each cluster contains indexes of objects in list of data. |
||
| 212 | |||
| 213 | """ |
||
| 214 | |||
| 215 | changes = numpy.Inf; |
||
| 216 | |||
| 217 | stop_condition = self.__tolerance * self.__tolerance; # Fast solution |
||
| 218 | |||
| 219 | clusters = []; |
||
| 220 | |||
| 221 | while (changes > stop_condition): |
||
| 222 | clusters = self.__update_clusters(centers, available_indexes); |
||
| 223 | clusters = [ cluster for cluster in clusters if len(cluster) > 0 ]; |
||
| 224 | |||
| 225 | updated_centers = self.__update_centers(clusters); |
||
| 226 | |||
| 227 | changes = max([euclidean_distance_sqrt(centers[index], updated_centers[index]) for index in range(len(updated_centers))]); # Fast solution |
||
| 228 | |||
| 229 | centers = updated_centers; |
||
| 230 | |||
| 231 | return (clusters, centers); |
||
| 232 | |||
| 233 | |||
| 234 | def __improve_structure(self, clusters, centers): |
||
| 235 | """! |
||
| 236 | @brief Check for best structure: divides each cluster into two and checks for best results using splitting criterion. |
||
| 237 | |||
| 238 | @param[in] clusters (list): Clusters that have been allocated (each cluster contains indexes of points from data). |
||
| 239 | @param[in] centers (list): Centers of clusters. |
||
| 240 | |||
| 241 | @return (list) Allocated centers for clustering. |
||
| 242 | |||
| 243 | """ |
||
| 244 | |||
| 245 | difference = 0.001; |
||
| 246 | |||
| 247 | allocated_centers = []; |
||
| 248 | |||
| 249 | for index_cluster in range(len(clusters)): |
||
| 250 | # split cluster into two child clusters |
||
| 251 | parent_child_centers = []; |
||
| 252 | parent_child_centers.append(list_math_addition_number(centers[index_cluster], -difference)); |
||
| 253 | parent_child_centers.append(list_math_addition_number(centers[index_cluster], difference)); |
||
| 254 | |||
| 255 | # solve k-means problem for children where data of parent are used. |
||
| 256 | (parent_child_clusters, parent_child_centers) = self.__improve_parameters(parent_child_centers, clusters[index_cluster]); |
||
| 257 | |||
| 258 | # If it's possible to split current data |
||
| 259 | if (len(parent_child_clusters) > 1): |
||
| 260 | # Calculate splitting criterion |
||
| 261 | parent_scores = self.__splitting_criterion([ clusters[index_cluster] ], [ centers[index_cluster] ]); |
||
| 262 | child_scores = self.__splitting_criterion([ parent_child_clusters[0], parent_child_clusters[1] ], parent_child_centers); |
||
| 263 | |||
| 264 | split_require = False; |
||
| 265 | |||
| 266 | # Reallocate number of centers (clusters) in line with scores |
||
| 267 | if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): |
||
| 268 | if (parent_scores < child_scores): split_require = True; |
||
| 269 | |||
| 270 | elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): |
||
| 271 | # If its score for the split structure with two children is smaller than that for the parent structure, |
||
| 272 | # then representing the data samples with two clusters is more accurate in comparison to a single parent cluster. |
||
| 273 | if (parent_scores > child_scores): split_require = True; |
||
| 274 | |||
| 275 | if (split_require is True): |
||
| 276 | allocated_centers.append(parent_child_centers[0]); |
||
| 277 | allocated_centers.append(parent_child_centers[1]); |
||
| 278 | else: |
||
| 279 | allocated_centers.append(centers[index_cluster]); |
||
| 280 | |||
| 281 | |||
| 282 | else: |
||
| 283 | allocated_centers.append(centers[index_cluster]); |
||
| 284 | |||
| 285 | return allocated_centers; |
||
| 286 | |||
| 287 | |||
| 288 | def __splitting_criterion(self, clusters, centers): |
||
| 289 | """! |
||
| 290 | @brief Calculates splitting criterion for input clusters. |
||
| 291 | |||
| 292 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
| 293 | @param[in] centers (list): Centers of the clusters. |
||
| 294 | |||
| 295 | @return (double) Returns splitting criterion. High value of splitting cretion means that current structure is much better. |
||
| 296 | |||
| 297 | @see __bayesian_information_criterion(clusters, centers) |
||
| 298 | @see __minimum_noiseless_description_length(clusters, centers) |
||
| 299 | |||
| 300 | """ |
||
| 301 | |||
| 302 | if (self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): |
||
| 303 | return self.__bayesian_information_criterion(clusters, centers); |
||
| 304 | |||
| 305 | elif (self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): |
||
| 306 | return self.__minimum_noiseless_description_length(clusters, centers); |
||
| 307 | |||
| 308 | else: |
||
| 309 | assert 0; |
||
| 310 | |||
| 311 | |||
| 312 | def __minimum_noiseless_description_length(self, clusters, centers): |
||
| 313 | """! |
||
| 314 | @brief Calculates splitting criterion for input clusters using minimum noiseless description length criterion. |
||
| 315 | |||
| 316 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
| 317 | @param[in] centers (list): Centers of the clusters. |
||
| 318 | |||
| 319 | @return (double) Returns splitting criterion in line with bayesian information criterion. |
||
| 320 | Low value of splitting cretion means that current structure is much better. |
||
| 321 | |||
| 322 | @see __bayesian_information_criterion(clusters, centers) |
||
| 323 | |||
| 324 | """ |
||
| 325 | |||
| 326 | scores = float('inf');
|
||
| 327 | |||
| 328 | W = 0.0; |
||
| 329 | K = len(clusters); |
||
| 330 | N = 0.0; |
||
| 331 | |||
| 332 | sigma_sqrt = 0.0; |
||
| 333 | |||
| 334 | alpha = 0.9; |
||
| 335 | betta = 0.9; |
||
| 336 | |||
| 337 | for index_cluster in range(0, len(clusters), 1): |
||
| 338 | Ni = len(clusters[index_cluster]); |
||
| 339 | if (Ni == 0): |
||
| 340 | return float('inf');
|
||
| 341 | |||
| 342 | Wi = 0.0; |
||
| 343 | for index_object in clusters[index_cluster]: |
||
| 344 | # euclidean_distance_sqrt should be used in line with paper, but in this case results are |
||
| 345 | # very poor, therefore square root is used to improved. |
||
| 346 | Wi += euclidean_distance(self.__pointer_data[index_object], centers[index_cluster]); |
||
| 347 | |||
| 348 | sigma_sqrt += Wi; |
||
| 349 | W += Wi / Ni; |
||
| 350 | N += Ni; |
||
| 351 | |||
| 352 | if (N - K > 0): |
||
| 353 | sigma_sqrt /= (N - K); |
||
| 354 | sigma = sigma_sqrt ** 0.5; |
||
| 355 | |||
| 356 | Kw = (1.0 - K / N) * sigma_sqrt; |
||
| 357 | Ks = ( 2.0 * alpha * sigma / (N ** 0.5) ) * ( (alpha ** 2.0) * sigma_sqrt / N + W - Kw / 2.0 ) ** 0.5; |
||
| 358 | |||
| 359 | scores = sigma_sqrt * (2 * K)**0.5 * ((2 * K)**0.5 + betta) / N + W - sigma_sqrt + Ks + 2 * alpha**0.5 * sigma_sqrt / N |
||
| 360 | |||
| 361 | View Code Duplication | return scores; |
|
| 362 | |||
| 363 | |||
| 364 | def __bayesian_information_criterion(self, clusters, centers): |
||
| 365 | """! |
||
| 366 | @brief Calculates splitting criterion for input clusters using bayesian information criterion. |
||
| 367 | |||
| 368 | @param[in] clusters (list): Clusters for which splitting criterion should be calculated. |
||
| 369 | @param[in] centers (list): Centers of the clusters. |
||
| 370 | |||
| 371 | @return (double) Splitting criterion in line with bayesian information criterion. |
||
| 372 | High value of splitting criterion means that current structure is much better. |
||
| 373 | |||
| 374 | @see __minimum_noiseless_description_length(clusters, centers) |
||
| 375 | |||
| 376 | """ |
||
| 377 | |||
| 378 | scores = [float('inf')] * len(clusters) # splitting criterion
|
||
| 379 | dimension = len(self.__pointer_data[0]); |
||
| 380 | |||
| 381 | # estimation of the noise variance in the data set |
||
| 382 | sigma_sqrt = 0.0; |
||
| 383 | K = len(clusters); |
||
| 384 | N = 0.0; |
||
| 385 | |||
| 386 | for index_cluster in range(0, len(clusters), 1): |
||
| 387 | for index_object in clusters[index_cluster]: |
||
| 388 | sigma_sqrt += euclidean_distance_sqrt(self.__pointer_data[index_object], centers[index_cluster]); |
||
| 389 | |||
| 390 | N += len(clusters[index_cluster]); |
||
| 391 | |||
| 392 | if (N - K > 0): |
||
| 393 | sigma_sqrt /= (N - K); |
||
| 394 | p = (K - 1) + dimension * K + 1; |
||
| 395 | |||
| 396 | # splitting criterion |
||
| 397 | View Code Duplication | for index_cluster in range(0, len(clusters), 1): |
|
| 398 | n = len(clusters[index_cluster]); |
||
| 399 | |||
| 400 | L = n * log(n) - n * log(N) - n * 0.5 * log(2.0 * numpy.pi) - n * dimension * 0.5 * log(sigma_sqrt) - (n - K) * 0.5; |
||
| 401 | |||
| 402 | # BIC calculation |
||
| 403 | scores[index_cluster] = L - p * 0.5 * log(N); |
||
| 404 | |||
| 405 | return sum(scores); |
||
| 406 | |||
| 407 | |||
| 408 | def __update_clusters(self, centers, available_indexes = None): |
||
| 409 | """! |
||
| 410 | @brief Calculates Euclidean distance to each point from the each cluster. |
||
| 411 | Nearest points are captured by according clusters and as a result clusters are updated. |
||
| 412 | |||
| 413 | @param[in] centers (list): Coordinates of centers of clusters that are represented by list: [center1, center2, ...]. |
||
| 414 | @param[in] available_indexes (list): Indexes that defines which points can be used from imput data, if None - then all points are used. |
||
| 415 | |||
| 416 | @return (list) Updated clusters. |
||
| 417 | |||
| 418 | """ |
||
| 419 | |||
| 420 | bypass = None; |
||
| 421 | if (available_indexes is None): |
||
| 422 | bypass = range(len(self.__pointer_data)); |
||
| 423 | else: |
||
| 424 | bypass = available_indexes; |
||
| 425 | |||
| 426 | clusters = [[] for i in range(len(centers))]; |
||
| 427 | for index_point in bypass: |
||
| 428 | index_optim = -1; |
||
| 429 | dist_optim = 0.0; |
||
| 430 | |||
| 431 | for index in range(len(centers)): |
||
| 432 | # dist = euclidean_distance(data[index_point], centers[index]); # Slow solution |
||
| 433 | dist = euclidean_distance_sqrt(self.__pointer_data[index_point], centers[index]); # Fast solution |
||
| 434 | |||
| 435 | if ( (dist < dist_optim) or (index is 0)): |
||
| 436 | index_optim = index; |
||
| 437 | dist_optim = dist; |
||
| 438 | |||
| 439 | clusters[index_optim].append(index_point); |
||
| 440 | |||
| 441 | return clusters; |
||
| 442 | |||
| 443 | |||
| 444 | def __update_centers(self, clusters): |
||
| 445 | """! |
||
| 446 | @brief Updates centers of clusters in line with contained objects. |
||
| 447 | |||
| 448 | @param[in] clusters (list): Clusters that contain indexes of objects from data. |
||
| 449 | |||
| 450 | @return (list) Updated centers. |
||
| 451 | |||
| 452 | """ |
||
| 453 | |||
| 454 | centers = [[] for i in range(len(clusters))]; |
||
| 455 | dimension = len(self.__pointer_data[0]) |
||
| 456 | |||
| 457 | for index in range(len(clusters)): |
||
| 458 | point_sum = [0.0] * dimension; |
||
| 459 | |||
| 460 | for index_point in clusters[index]: |
||
| 461 | point_sum = list_math_addition(point_sum, self.__pointer_data[index_point]); |
||
| 462 | |||
| 463 | centers[index] = list_math_division_number(point_sum, len(clusters[index])); |
||
| 464 | |||
| 465 | return centers; |
||
| 466 |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.