|
1
|
|
|
"""!
|
|
2
|
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: BIRCH
|
|
4
|
|
|
@details Implementation based on article:
|
|
5
|
|
|
- T.Zhang, R.Ramakrishnan, M.Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. 1996.
|
|
6
|
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected])
|
|
8
|
|
|
@date 2014-2017
|
|
9
|
|
|
@copyright GNU Public License
|
|
10
|
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE
|
|
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
|
13
|
|
|
it under the terms of the GNU General Public License as published by
|
|
14
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
15
|
|
|
(at your option) any later version.
|
|
16
|
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
|
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
20
|
|
|
GNU General Public License for more details.
|
|
21
|
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License
|
|
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
24
|
|
|
@endcond
|
|
25
|
|
|
|
|
26
|
|
|
"""
|
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
from pyclustering.utils import linear_sum, square_sum;
|
|
30
|
|
|
|
|
31
|
|
|
from pyclustering.cluster.encoder import type_encoding;
|
|
32
|
|
|
|
|
33
|
|
|
from pyclustering.container.cftree import cftree, cfentry, measurement_type;
|
|
34
|
|
|
|
|
35
|
|
|
|
|
36
|
|
|
class birch:
|
|
37
|
|
|
"""!
|
|
38
|
|
|
@brief Class represents clustering algorithm BIRCH.
|
|
39
|
|
|
|
|
40
|
|
|
Example:
|
|
41
|
|
|
@code
|
|
42
|
|
|
# sample for cluster analysis (represented by list)
|
|
43
|
|
|
sample = read_sample(path_to_sample);
|
|
44
|
|
|
|
|
45
|
|
|
# create object of birch that uses CCORE for processing
|
|
46
|
|
|
birch_instance = birch(sample, 2, 5, 5, 0.05, measurement_type.CENTROID_EUCLIDIAN_DISTANCE, 200, True);
|
|
47
|
|
|
|
|
48
|
|
|
# cluster analysis
|
|
49
|
|
|
birch_instance.process();
|
|
50
|
|
|
|
|
51
|
|
|
# obtain results of clustering
|
|
52
|
|
|
clusters = birch_instance.get_clusters();
|
|
53
|
|
|
@endcode
|
|
54
|
|
|
|
|
55
|
|
|
"""
|
|
56
|
|
|
|
|
57
|
|
|
def __init__(self, data, number_clusters, branching_factor = 5, max_node_entries = 5, initial_diameter = 0.1, type_measurement = measurement_type.CENTROID_EUCLIDIAN_DISTANCE, entry_size_limit = 200, diameter_multiplier = 1.5, ccore = False):
|
|
58
|
|
|
"""!
|
|
59
|
|
|
@brief Constructor of clustering algorithm BIRCH.
|
|
60
|
|
|
|
|
61
|
|
|
@param[in] data (list): Input data presented as list of points (objects), where each point should be represented by list or tuple.
|
|
62
|
|
|
@param[in] number_clusters (uint): Number of clusters that should be allocated.
|
|
63
|
|
|
@param[in] branching_factor (uint): Maximum number of successor that might be contained by each non-leaf node in CF-Tree.
|
|
64
|
|
|
@param[in] max_node_entries (uint): Maximum number of entries that might be contained by each leaf node in CF-Tree.
|
|
65
|
|
|
@param[in] initial_diameter (double): Initial diameter that used for CF-Tree construction, it can be increase if entry_size_limit is exceeded.
|
|
66
|
|
|
@param[in] type_measurement (measurement_type): Type measurement used for calculation distance metrics.
|
|
67
|
|
|
@param[in] entry_size_limit (uint): Maximum number of entries that can be stored in CF-Tree, if it is exceeded during creation then diameter is increased and CF-Tree is rebuilt.
|
|
68
|
|
|
@param[in] diameter_multiplier (double): Multiplier that is used for increasing diameter when entry_size_limit is exceeded.
|
|
69
|
|
|
@param[in] ccore (bool): If True than DLL CCORE (C++ solution) will be used for solving the problem.
|
|
70
|
|
|
|
|
71
|
|
|
@remark Despite eight arguments only the first two is mandatory, others can be ommitted. In this case default values are used for instance creation.
|
|
72
|
|
|
|
|
73
|
|
|
Example:
|
|
74
|
|
|
@code
|
|
75
|
|
|
birch_instance1 = birch(sample1, 2); # two clusters should be allocated
|
|
76
|
|
|
birch_instance2 = birch(sample2, 5); # five clusters should be allocated
|
|
77
|
|
|
|
|
78
|
|
|
# three clusters should be allocated, but also each leaf node can have maximum 5
|
|
79
|
|
|
# entries and each entry can have maximum 5 descriptors with initial diameter 0.05.
|
|
80
|
|
|
birch_instance3 = birch(sample3, 3, 5, 5, 0.05);
|
|
81
|
|
|
@endcode
|
|
82
|
|
|
|
|
83
|
|
|
"""
|
|
84
|
|
|
|
|
85
|
|
|
self.__pointer_data = data;
|
|
86
|
|
|
self.__number_clusters = number_clusters;
|
|
87
|
|
|
|
|
88
|
|
|
self.__measurement_type = type_measurement;
|
|
89
|
|
|
self.__entry_size_limit = entry_size_limit;
|
|
90
|
|
|
self.__diameter_multiplier = diameter_multiplier;
|
|
91
|
|
|
self.__ccore = ccore;
|
|
92
|
|
|
|
|
93
|
|
|
self.__features = None;
|
|
94
|
|
|
self.__tree = cftree(branching_factor, max_node_entries, initial_diameter, type_measurement);
|
|
95
|
|
|
|
|
96
|
|
|
self.__clusters = [];
|
|
97
|
|
|
self.__noise = [];
|
|
98
|
|
|
|
|
99
|
|
|
|
|
100
|
|
|
def process(self):
|
|
101
|
|
|
"""!
|
|
102
|
|
|
@brief Performs cluster analysis in line with rules of BIRCH algorithm.
|
|
103
|
|
|
|
|
104
|
|
|
@remark Results of clustering can be obtained using corresponding gets methods.
|
|
105
|
|
|
|
|
106
|
|
|
@see get_clusters()
|
|
107
|
|
|
|
|
108
|
|
|
"""
|
|
109
|
|
|
|
|
110
|
|
|
self.__insert_data();
|
|
111
|
|
|
self.__extract_features();
|
|
112
|
|
|
|
|
113
|
|
|
# in line with specification modify hierarchical algorithm should be used for further clustering
|
|
114
|
|
|
current_number_clusters = len(self.__features);
|
|
115
|
|
|
|
|
116
|
|
|
while (current_number_clusters > self.__number_clusters):
|
|
117
|
|
|
indexes = self.__find_nearest_cluster_features();
|
|
118
|
|
|
|
|
119
|
|
|
self.__features[indexes[0]] += self.__features[indexes[1]];
|
|
120
|
|
|
self.__features.pop(indexes[1]);
|
|
121
|
|
|
|
|
122
|
|
|
current_number_clusters = len(self.__features);
|
|
123
|
|
|
|
|
124
|
|
|
# decode data
|
|
125
|
|
|
self.__decode_data();
|
|
126
|
|
|
|
|
127
|
|
|
|
|
128
|
|
|
def get_clusters(self):
|
|
129
|
|
|
"""!
|
|
130
|
|
|
@brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data.
|
|
131
|
|
|
|
|
132
|
|
|
@remark Allocated noise can be returned only after data processing (use method process() before). Otherwise empty list is returned.
|
|
133
|
|
|
|
|
134
|
|
|
@return (list) List of allocated clusters.
|
|
135
|
|
|
|
|
136
|
|
|
@see process()
|
|
137
|
|
|
@see get_noise()
|
|
138
|
|
|
|
|
139
|
|
|
"""
|
|
140
|
|
|
|
|
141
|
|
|
return self.__clusters;
|
|
142
|
|
|
|
|
143
|
|
|
|
|
144
|
|
|
def get_cluster_encoding(self):
|
|
145
|
|
|
"""!
|
|
146
|
|
|
@brief Returns clustering result representation type that indicate how clusters are encoded.
|
|
147
|
|
|
|
|
148
|
|
|
@return (type_encoding) Clustering result representation.
|
|
149
|
|
|
|
|
150
|
|
|
@see get_clusters()
|
|
151
|
|
|
|
|
152
|
|
|
"""
|
|
153
|
|
|
|
|
154
|
|
|
return type_encoding.CLUSTER_INDEX_LIST_SEPARATION;
|
|
155
|
|
|
|
|
156
|
|
|
|
|
157
|
|
|
def __extract_features(self):
|
|
158
|
|
|
"""!
|
|
159
|
|
|
@brief Extracts features from CF-tree cluster.
|
|
160
|
|
|
|
|
161
|
|
|
"""
|
|
162
|
|
|
|
|
163
|
|
|
self.__features = [];
|
|
164
|
|
|
|
|
165
|
|
|
if (len(self.__tree.leafes) == 1):
|
|
166
|
|
|
# parameters are too general, copy all entries
|
|
167
|
|
|
for entry in self.__tree.leafes[0].entries:
|
|
168
|
|
|
self.__features.append(entry);
|
|
169
|
|
|
|
|
170
|
|
|
else:
|
|
171
|
|
|
# copy all leaf clustering features
|
|
172
|
|
|
for node in self.__tree.leafes:
|
|
173
|
|
|
self.__features.append(node.feature);
|
|
174
|
|
|
|
|
175
|
|
|
|
|
176
|
|
|
def __decode_data(self):
|
|
177
|
|
|
"""!
|
|
178
|
|
|
@brief Decodes data from CF-tree features.
|
|
179
|
|
|
|
|
180
|
|
|
"""
|
|
181
|
|
|
|
|
182
|
|
|
self.__clusters = [ [] for _ in range(self.__number_clusters) ];
|
|
183
|
|
|
self.__noise = [];
|
|
184
|
|
|
|
|
185
|
|
|
for index_point in range(0, len(self.__pointer_data)):
|
|
186
|
|
|
(_, cluster_index) = self.__get_nearest_feature(self.__pointer_data[index_point], self.__features);
|
|
187
|
|
|
|
|
188
|
|
|
self.__clusters[cluster_index].append(index_point);
|
|
189
|
|
|
|
|
190
|
|
|
|
|
191
|
|
|
def __insert_data(self):
|
|
192
|
|
|
"""!
|
|
193
|
|
|
@brief Inserts input data to the tree.
|
|
194
|
|
|
|
|
195
|
|
|
@remark If number of maximum number of entries is exceeded than diameter is increased and tree is rebuilt.
|
|
196
|
|
|
|
|
197
|
|
|
"""
|
|
198
|
|
|
|
|
199
|
|
View Code Duplication |
for index_point in range(0, len(self.__pointer_data)):
|
|
|
|
|
|
|
200
|
|
|
point = self.__pointer_data[index_point];
|
|
201
|
|
|
self.__tree.insert_cluster( [ point ] );
|
|
202
|
|
|
|
|
203
|
|
|
if (self.__tree.amount_entries > self.__entry_size_limit):
|
|
204
|
|
|
self.__tree = self.__rebuild_tree(index_point);
|
|
205
|
|
|
|
|
206
|
|
|
#self.__tree.show_feature_destibution(self.__pointer_data);
|
|
207
|
|
|
|
|
208
|
|
|
|
|
209
|
|
|
def __rebuild_tree(self, index_point):
|
|
210
|
|
|
"""!
|
|
211
|
|
|
@brief Rebuilt tree in case of maxumum number of entries is exceeded.
|
|
212
|
|
|
|
|
213
|
|
|
@param[in] index_point (uint): Index of point that is used as end point of re-building.
|
|
214
|
|
|
|
|
215
|
|
|
@return (cftree) Rebuilt tree with encoded points till specified point from input data space.
|
|
216
|
|
|
|
|
217
|
|
|
"""
|
|
218
|
|
|
|
|
219
|
|
|
rebuild_result = False;
|
|
220
|
|
|
increased_diameter = self.__tree.threshold * self.__diameter_multiplier;
|
|
221
|
|
|
|
|
222
|
|
|
tree = None;
|
|
223
|
|
|
|
|
224
|
|
|
while(rebuild_result is False):
|
|
225
|
|
|
# increase diameter and rebuild tree
|
|
226
|
|
|
if (increased_diameter == 0.0):
|
|
227
|
|
|
increased_diameter = 1.0;
|
|
228
|
|
|
|
|
229
|
|
|
# build tree with update parameters
|
|
230
|
|
|
tree = cftree(self.__tree.branch_factor, self.__tree.max_entries, increased_diameter, self.__tree.type_measurement);
|
|
231
|
|
|
|
|
232
|
|
|
for index_point in range(0, index_point + 1):
|
|
233
|
|
|
point = self.__pointer_data[index_point];
|
|
234
|
|
|
tree.insert_cluster([point]);
|
|
235
|
|
|
|
|
236
|
|
|
if (tree.amount_entries > self.__entry_size_limit):
|
|
237
|
|
|
increased_diameter *= self.__diameter_multiplier;
|
|
238
|
|
|
continue;
|
|
239
|
|
|
|
|
240
|
|
|
# Re-build is successful.
|
|
241
|
|
|
rebuild_result = True;
|
|
242
|
|
|
|
|
243
|
|
|
return tree;
|
|
244
|
|
|
|
|
245
|
|
|
|
|
246
|
|
|
def __find_nearest_cluster_features(self):
|
|
247
|
|
|
"""!
|
|
248
|
|
|
@brief Find pair of nearest CF entries.
|
|
249
|
|
|
|
|
250
|
|
|
@return (list) List of two nearest enties that are represented by list [index_point1, index_point2].
|
|
251
|
|
|
|
|
252
|
|
|
"""
|
|
253
|
|
|
|
|
254
|
|
|
minimum_distance = float("Inf");
|
|
255
|
|
|
index1 = 0;
|
|
256
|
|
|
index2 = 0;
|
|
257
|
|
|
|
|
258
|
|
|
for index_candidate1 in range(0, len(self.__features)):
|
|
259
|
|
|
feature1 = self.__features[index_candidate1];
|
|
260
|
|
|
for index_candidate2 in range(index_candidate1 + 1, len(self.__features)):
|
|
261
|
|
|
feature2 = self.__features[index_candidate2];
|
|
262
|
|
|
|
|
263
|
|
|
distance = feature1.get_distance(feature2, self.__measurement_type);
|
|
264
|
|
|
if (distance < minimum_distance):
|
|
265
|
|
|
minimum_distance = distance;
|
|
266
|
|
|
|
|
267
|
|
|
index1 = index_candidate1;
|
|
268
|
|
|
index2 = index_candidate2;
|
|
269
|
|
|
|
|
270
|
|
|
return [index1, index2];
|
|
271
|
|
|
|
|
272
|
|
|
|
|
273
|
|
|
def __get_nearest_feature(self, point, feature_collection):
|
|
274
|
|
|
"""!
|
|
275
|
|
|
@brief Find nearest entry for specified point.
|
|
276
|
|
|
|
|
277
|
|
|
@param[in] point (list): Pointer to point from input dataset.
|
|
278
|
|
|
@param[in] feature_collection (list): Feature collection that is used for obtaining nearest feature for the specified point.
|
|
279
|
|
|
|
|
280
|
|
|
@return (double, uint) Tuple of distance to nearest entry to the specified point and index of that entry.
|
|
281
|
|
|
|
|
282
|
|
|
"""
|
|
283
|
|
|
|
|
284
|
|
|
minimum_distance = float("Inf");
|
|
285
|
|
|
index_nearest_feature = -1;
|
|
286
|
|
|
|
|
287
|
|
|
for index_entry in range(0, len(feature_collection)):
|
|
288
|
|
|
point_entry = cfentry(1, linear_sum([ point ]), square_sum([ point ]));
|
|
289
|
|
|
|
|
290
|
|
|
distance = feature_collection[index_entry].get_distance(point_entry, self.__measurement_type);
|
|
291
|
|
|
if (distance < minimum_distance):
|
|
292
|
|
|
minimum_distance = distance;
|
|
293
|
|
|
index_nearest_feature = index_entry;
|
|
294
|
|
|
|
|
295
|
|
|
return (minimum_distance, index_nearest_feature);
|
|
296
|
|
|
|