|
1
|
|
|
"""! |
|
2
|
|
|
|
|
3
|
|
|
@brief Module for representing clustering results. |
|
4
|
|
|
|
|
5
|
|
|
@authors Andrei Novikov ([email protected]) |
|
6
|
|
|
@date 2014-2016 |
|
7
|
|
|
@copyright GNU Public License |
|
8
|
|
|
|
|
9
|
|
|
@cond GNU_PUBLIC_LICENSE |
|
10
|
|
|
PyClustering is free software: you can redistribute it and/or modify |
|
11
|
|
|
it under the terms of the GNU General Public License as published by |
|
12
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
13
|
|
|
(at your option) any later version. |
|
14
|
|
|
|
|
15
|
|
|
PyClustering is distributed in the hope that it will be useful, |
|
16
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
17
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
18
|
|
|
GNU General Public License for more details. |
|
19
|
|
|
|
|
20
|
|
|
You should have received a copy of the GNU General Public License |
|
21
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
22
|
|
|
@endcond |
|
23
|
|
|
|
|
24
|
|
|
""" |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
|
|
from enum import IntEnum; |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
class type_encoding(IntEnum): |
|
31
|
|
|
## Results are represented by list of indexes and belonging to the cluster is defined by cluster index and element's position corresponds to object's position in input data, for example [0, 0, 1, 1, 1, 0]. |
|
32
|
|
|
CLUSTER_INDEX_LABELING = 0; |
|
33
|
|
|
|
|
34
|
|
|
## Results are represented by list of lists, where each list consists of object indexes, for example [ [0, 1, 2], [3, 4, 5], [6, 7] ]. |
|
35
|
|
|
CLUSTER_INDEX_LIST_SEPARATION = 1; |
|
36
|
|
|
|
|
37
|
|
|
## Results are represented by list of lists, where each list consists of objects, for example [ [obj1, obj2], [obj3, obj4, obj5], [obj6, obj7] ]. |
|
38
|
|
|
CLUSTER_OBJECT_LIST_SEPARATION = 2; |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
|
class cluster_encoder: |
|
42
|
|
|
"""! |
|
43
|
|
|
@brief Provides service to change clustering result representation. |
|
44
|
|
|
|
|
45
|
|
|
Example: |
|
46
|
|
|
@code |
|
47
|
|
|
# load list of points for cluster analysis |
|
48
|
|
|
sample = read_sample(path); |
|
49
|
|
|
|
|
50
|
|
|
# create instance of K-Means algorithm |
|
51
|
|
|
kmeans_instance = kmeans(sample, [ [0.0, 0.1], [2.5, 2.6] ]); |
|
52
|
|
|
|
|
53
|
|
|
# run cluster analysis and obtain results |
|
54
|
|
|
kmeans_instance.process(); |
|
55
|
|
|
clusters = kmeans_instance.get_clusters(); |
|
56
|
|
|
|
|
57
|
|
|
# by default k-means returns representation CLUSTER_INDEX_LIST_SEPARATION |
|
58
|
|
|
type_repr = kmeans_instance.get_cluster_encoding(); |
|
59
|
|
|
encoder = cluster_encoder(type_repr, clusters, sample); |
|
60
|
|
|
|
|
61
|
|
|
# change representation from index list to label list |
|
62
|
|
|
representor.set_encoding(type_encoding.CLUSTER_INDEX_LABELING); |
|
63
|
|
|
|
|
64
|
|
|
# change representation from label to object list |
|
65
|
|
|
representor.set_encoding(type_encoding.CLUSTER_OBJECT_LIST_SEPARATION); |
|
66
|
|
|
@endcode |
|
67
|
|
|
""" |
|
68
|
|
|
|
|
69
|
|
|
def __init__(self, encoding, clusters, data): |
|
70
|
|
|
"""! |
|
71
|
|
|
@brief Constructor of clustering result representor. |
|
72
|
|
|
|
|
73
|
|
|
@param[in] encoding (type_encoding): Type of clusters representation (index list, object list or labels). |
|
74
|
|
|
@param[in] clusters (list): Current clusters representation. |
|
75
|
|
|
@param[in] data (list): Data that corresponds to clusters. |
|
76
|
|
|
|
|
77
|
|
|
""" |
|
78
|
|
|
|
|
79
|
|
|
self.__type_representation = encoding; |
|
80
|
|
|
self.__clusters = clusters; |
|
81
|
|
|
self.__data = data; |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
@property |
|
85
|
|
|
def get_encoding(self): |
|
86
|
|
|
"""! |
|
87
|
|
|
@brief Returns current cluster representation. |
|
88
|
|
|
|
|
89
|
|
|
""" |
|
90
|
|
|
return self.__type_representation; |
|
91
|
|
|
|
|
92
|
|
|
|
|
93
|
|
|
def get_clusters(self): |
|
94
|
|
|
"""! |
|
95
|
|
|
@brief Returns clusters representation. |
|
96
|
|
|
|
|
97
|
|
|
""" |
|
98
|
|
|
return self.__clusters; |
|
99
|
|
|
|
|
100
|
|
|
|
|
101
|
|
|
def get_data(self): |
|
102
|
|
|
"""! |
|
103
|
|
|
@brief Returns data that corresponds to clusters. |
|
104
|
|
|
|
|
105
|
|
|
""" |
|
106
|
|
|
return self.__data; |
|
107
|
|
|
|
|
108
|
|
|
|
|
109
|
|
|
def set_encoding(self, encoding): |
|
110
|
|
|
"""! |
|
111
|
|
|
@brief Change clusters encoding to specified type (index list, object list, labeling). |
|
112
|
|
|
|
|
113
|
|
|
@param[in] encoding (type_encoding): New type of clusters representation. |
|
114
|
|
|
|
|
115
|
|
|
""" |
|
116
|
|
|
|
|
117
|
|
|
if(encoding == self.__type_representation): |
|
118
|
|
|
return; |
|
119
|
|
|
|
|
120
|
|
|
if (self.__type_representation == type_encoding.CLUSTER_INDEX_LABELING): |
|
121
|
|
|
if (encoding == type_encoding.CLUSTER_INDEX_LIST_SEPARATION): |
|
122
|
|
|
self.__clusters = self.__convert_label_to_index(); |
|
123
|
|
|
|
|
124
|
|
|
else: |
|
125
|
|
|
self.__clusters = self.__convert_label_to_object(); |
|
126
|
|
|
|
|
127
|
|
|
elif (self.__type_representation == type_encoding.CLUSTER_INDEX_LIST_SEPARATION): |
|
128
|
|
|
if (encoding == type_encoding.CLUSTER_INDEX_LABELING): |
|
129
|
|
|
self.__clusters = self.__convert_index_to_label(); |
|
130
|
|
|
|
|
131
|
|
|
else: |
|
132
|
|
|
self.__clusters = self.__convert_index_to_object(); |
|
133
|
|
|
|
|
134
|
|
|
else: |
|
135
|
|
|
if (encoding == type_encoding.CLUSTER_INDEX_LABELING): |
|
136
|
|
|
self.__clusters = self.__convert_object_to_label(); |
|
137
|
|
|
|
|
138
|
|
|
else: |
|
139
|
|
|
self.__clusters = self.__convert_object_to_index(); |
|
140
|
|
|
|
|
141
|
|
|
self.__type_representation = encoding; |
|
142
|
|
|
|
|
143
|
|
|
|
|
144
|
|
|
def __convert_index_to_label(self): |
|
145
|
|
|
clusters = [0] * len(self.__data); |
|
146
|
|
|
index_cluster = 0; |
|
147
|
|
|
|
|
148
|
|
|
for cluster in self.__clusters: |
|
149
|
|
|
for index_object in cluster: |
|
150
|
|
|
clusters[index_object] = index_cluster; |
|
151
|
|
|
|
|
152
|
|
|
index_cluster += 1; |
|
153
|
|
|
|
|
154
|
|
|
return clusters; |
|
155
|
|
|
|
|
156
|
|
|
|
|
157
|
|
|
def __convert_index_to_object(self): |
|
158
|
|
|
clusters = [ [] for _ in range(len(self.__clusters)) ]; |
|
159
|
|
|
for index_cluster in range(len(self.__clusters)): |
|
160
|
|
|
for index_object in self.__clusters[index_cluster]: |
|
161
|
|
|
data_object = self.__data[index_object]; |
|
162
|
|
|
clusters[index_cluster].append(data_object); |
|
163
|
|
|
|
|
164
|
|
|
return clusters; |
|
165
|
|
|
|
|
166
|
|
|
|
|
167
|
|
|
def __convert_object_to_label(self): |
|
168
|
|
|
positions = dict(); |
|
169
|
|
|
clusters = [0] * len(self.__data); |
|
170
|
|
|
index_cluster = 0; |
|
171
|
|
|
|
|
172
|
|
|
for cluster in self.__clusters: |
|
173
|
|
|
for data_object in cluster: |
|
174
|
|
|
index_object = -1; |
|
175
|
|
|
hashable_data_object = str(data_object); |
|
176
|
|
|
if (hashable_data_object in positions): |
|
177
|
|
|
index_object = self.__data.index(data_object, positions[hashable_data_object] + 1); |
|
178
|
|
|
else: |
|
179
|
|
|
index_object = self.__data.index(data_object); |
|
180
|
|
|
|
|
181
|
|
|
clusters[index_object] = index_cluster; |
|
182
|
|
|
positions[hashable_data_object] = index_object; |
|
183
|
|
|
|
|
184
|
|
|
index_cluster += 1; |
|
185
|
|
|
|
|
186
|
|
|
return clusters; |
|
187
|
|
|
|
|
188
|
|
|
|
|
189
|
|
|
def __convert_object_to_index(self): |
|
190
|
|
|
positions = dict(); |
|
191
|
|
|
clusters = [ [] for _ in range(len(self.__clusters)) ]; |
|
192
|
|
|
for index_cluster in range(len(self.__clusters)): |
|
193
|
|
|
for data_object in self.__clusters[index_cluster]: |
|
194
|
|
|
index_object = -1; |
|
195
|
|
|
hashable_data_object = str(data_object); |
|
196
|
|
|
if (hashable_data_object in positions): |
|
197
|
|
|
index_object = self.__data.index(data_object, positions[hashable_data_object] + 1); |
|
198
|
|
|
else: |
|
199
|
|
|
index_object = self.__data.index(data_object); |
|
200
|
|
|
|
|
201
|
|
|
clusters[index_cluster].append(index_object); |
|
202
|
|
|
positions[hashable_data_object] = index_object; |
|
203
|
|
|
|
|
204
|
|
|
return clusters; |
|
205
|
|
|
|
|
206
|
|
|
|
|
207
|
|
|
def __convert_label_to_index(self): |
|
208
|
|
|
clusters = [ [] for _ in range(max(self.__clusters) + 1) ]; |
|
209
|
|
|
|
|
210
|
|
|
for index_object in range(len(self.__data)): |
|
211
|
|
|
index_cluster = self.__clusters[index_object]; |
|
212
|
|
|
clusters[index_cluster].append(index_object); |
|
213
|
|
|
|
|
214
|
|
|
return clusters; |
|
215
|
|
|
|
|
216
|
|
|
|
|
217
|
|
|
def __convert_label_to_object(self): |
|
218
|
|
|
clusters = [ [] for _ in range(max(self.__clusters) + 1) ]; |
|
219
|
|
|
|
|
220
|
|
|
for index_object in range(len(self.__data)): |
|
221
|
|
|
index_cluster = self.__clusters[index_object]; |
|
222
|
|
|
clusters[index_cluster].append(self.__data[index_object]); |
|
223
|
|
|
|
|
224
|
|
|
return clusters; |