1
|
|
|
"""! |
2
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: Genetic clustering algorithm (GA). |
4
|
|
|
|
5
|
|
|
@authors Andrey Novikov, Aleksey Kukushkin ([email protected]) |
6
|
|
|
@date 2014-2017 |
7
|
|
|
@copyright GNU Public License |
8
|
|
|
|
9
|
|
|
@cond GNU_PUBLIC_LICENSE |
10
|
|
|
PyClustering is free software: you can redistribute it and/or modify |
11
|
|
|
it under the terms of the GNU General Public License as published by |
12
|
|
|
the Free Software Foundation, either version 3 of the License, or |
13
|
|
|
(at your option) any later version. |
14
|
|
|
|
15
|
|
|
PyClustering is distributed in the hope that it will be useful, |
16
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
17
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18
|
|
|
GNU General Public License for more details. |
19
|
|
|
|
20
|
|
|
You should have received a copy of the GNU General Public License |
21
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
22
|
|
|
@endcond |
23
|
|
|
|
24
|
|
|
""" |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
import numpy as np; |
|
|
|
|
28
|
|
|
import math; |
29
|
|
|
|
30
|
|
|
import matplotlib.pyplot as plt; |
|
|
|
|
31
|
|
|
import matplotlib.animation as animation; |
|
|
|
|
32
|
|
|
|
33
|
|
|
from pyclustering.cluster import cluster_visualizer; |
34
|
|
|
from pyclustering.cluster.ga_maths import ga_math; |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
|
38
|
|
|
class ga_observer: |
39
|
|
|
"""! |
40
|
|
|
|
41
|
|
|
""" |
42
|
|
|
|
43
|
|
|
def __init__(self, need_global_best=False, need_population_best=False, need_mean_ff=False): |
44
|
|
|
""" """ |
45
|
|
|
|
46
|
|
|
# Global best chromosome and fitness function for each population |
47
|
|
|
self._global_best_result = {'chromosome': [], 'fitness_function': []}; |
48
|
|
|
|
49
|
|
|
# Best chromosome and fitness function on a population |
50
|
|
|
self._best_population_result = {'chromosome': [], 'fitness_function': []}; |
51
|
|
|
|
52
|
|
|
# Mean fitness function on each population |
53
|
|
|
self._mean_ff_result = []; |
54
|
|
|
|
55
|
|
|
# Flags to collect |
56
|
|
|
self._need_global_best = need_global_best; |
57
|
|
|
self._need_population_best = need_population_best; |
58
|
|
|
self._need_mean_ff = need_mean_ff; |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
def __len__(self): |
62
|
|
|
return len(self._global_best_result['chromosome']); |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
def collect_global_best(self, best_chromosome, best_fitness_function): |
66
|
|
|
""" """ |
67
|
|
|
|
68
|
|
|
if not self._need_global_best: |
69
|
|
|
return; |
70
|
|
|
|
71
|
|
|
self._global_best_result['chromosome'].append(best_chromosome); |
72
|
|
|
self._global_best_result['fitness_function'].append(best_fitness_function); |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
def collect_population_best(self, best_chromosome, best_fitness_function): |
76
|
|
|
""" """ |
77
|
|
|
|
78
|
|
|
if not self._need_population_best: |
79
|
|
|
return; |
80
|
|
|
|
81
|
|
|
self._best_population_result['chromosome'].append(best_chromosome); |
82
|
|
|
self._best_population_result['fitness_function'].append(best_fitness_function); |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
def collect_mean(self, fitness_functions): |
86
|
|
|
""" """ |
87
|
|
|
|
88
|
|
|
if not self._need_mean_ff: |
89
|
|
|
return; |
90
|
|
|
|
91
|
|
|
self._mean_ff_result.append(np.mean(fitness_functions)); |
92
|
|
|
|
93
|
|
|
|
94
|
|
|
def get_global_best(self): |
95
|
|
|
return self._global_best_result; |
96
|
|
|
|
97
|
|
|
|
98
|
|
|
def get_population_best(self): |
99
|
|
|
return self._best_population_result; |
100
|
|
|
|
101
|
|
|
|
102
|
|
|
def get_mean_fitness_function(self): |
103
|
|
|
return self._mean_ff_result; |
104
|
|
|
|
105
|
|
|
|
106
|
|
|
|
107
|
|
|
class ga_visualizer: |
108
|
|
|
@staticmethod |
109
|
|
|
def show_evolution(observer, start_iteration = 0, stop_iteration = None, ax = None, display = True): |
110
|
|
|
if (ax is None): |
111
|
|
|
_, ax = plt.subplots(1); |
112
|
|
|
ax.set_title("Evolution"); |
113
|
|
|
|
114
|
|
|
if (stop_iteration is None): |
115
|
|
|
stop_iteration = len(observer); |
116
|
|
|
|
117
|
|
|
line_best, = ax.plot(observer.get_global_best()['fitness_function'][start_iteration:stop_iteration], 'r'); |
118
|
|
|
line_current, = ax.plot(observer.get_population_best()['fitness_function'][start_iteration:stop_iteration], 'k'); |
119
|
|
|
line_mean, = ax.plot(observer.get_mean_fitness_function()[start_iteration:stop_iteration], 'c'); |
120
|
|
|
|
121
|
|
|
ax.set_xlabel("Iteration"); |
122
|
|
|
ax.set_ylabel("Fitness function"); |
123
|
|
View Code Duplication |
ax.legend([line_best, line_current, line_mean], ["The best pop.", "Cur. best pop.", "Average"], prop={'size': 10}); |
|
|
|
|
124
|
|
|
ax.grid(); |
125
|
|
|
|
126
|
|
|
print(start_iteration, stop_iteration); |
127
|
|
|
if (display is True): |
128
|
|
|
plt.show(); |
129
|
|
|
|
130
|
|
|
|
131
|
|
|
@staticmethod |
132
|
|
|
def show_clusters(data, observer, marker = '.', markersize = None): |
133
|
|
|
figure = plt.figure(); |
134
|
|
|
ax1 = figure.add_subplot(121); |
135
|
|
|
|
136
|
|
|
clusters = ga_math.get_clusters_representation(observer.get_global_best()['chromosome'][-1]); |
137
|
|
|
|
138
|
|
|
visualizer = cluster_visualizer(1, 2); |
139
|
|
|
visualizer.append_clusters(clusters, data, 0, marker, markersize); |
140
|
|
|
visualizer.show(figure, display = False); |
141
|
|
|
|
142
|
|
|
ga_visualizer.show_evolution(observer, 0, None, ax1, True); |
143
|
|
|
|
144
|
|
|
|
145
|
|
|
@staticmethod |
146
|
|
|
def animate_cluster_allocation(data, observer, animation_velocity = 75, save_movie = None): |
147
|
|
View Code Duplication |
figure = plt.figure(); |
|
|
|
|
148
|
|
|
|
149
|
|
|
def init_frame(): |
150
|
|
|
return frame_generation(0); |
151
|
|
|
|
152
|
|
|
def frame_generation(index_iteration): |
153
|
|
|
figure.clf(); |
154
|
|
|
|
155
|
|
|
figure.suptitle("Clustering genetic algorithm (iteration: " + str(index_iteration) +")", fontsize = 20, fontweight = 'bold'); |
156
|
|
|
|
157
|
|
|
visualizer = cluster_visualizer(4, 2, ["Population #" + str(index_iteration), "The best population"]); |
158
|
|
|
|
159
|
|
|
local_minimum_clusters = ga_math.get_clusters_representation(observer.get_population_best()['chromosome'][index_iteration]); |
160
|
|
|
visualizer.append_clusters(local_minimum_clusters, data, 0); |
161
|
|
|
|
162
|
|
|
global_minimum_clusters = ga_math.get_clusters_representation(observer.get_global_best()['chromosome'][index_iteration]); |
163
|
|
|
visualizer.append_clusters(global_minimum_clusters, data, 1); |
164
|
|
|
|
165
|
|
|
ax1 = plt.subplot2grid((2, 2), (1, 0), colspan = 2); |
166
|
|
|
ga_visualizer.show_evolution(observer, 0, index_iteration + 1, ax1, False); |
167
|
|
|
|
168
|
|
|
visualizer.show(figure, shift = 0, display = False); |
169
|
|
|
figure.subplots_adjust(top = 0.85); |
170
|
|
|
|
171
|
|
|
return [ figure.gca() ]; |
172
|
|
|
|
173
|
|
|
iterations = len(observer); |
174
|
|
|
cluster_animation = animation.FuncAnimation(figure, frame_generation, iterations, interval = animation_velocity, init_func = init_frame, repeat_delay = 5000); |
175
|
|
|
|
176
|
|
|
if (save_movie is not None): |
177
|
|
|
# plt.rcParams['animation.ffmpeg_path'] = 'D:\\Program Files\\ffmpeg-3.3.1-win64-static\\bin\\ffmpeg.exe'; |
178
|
|
|
# ffmpeg_writer = animation.FFMpegWriter(fps = 15); |
179
|
|
|
# cluster_animation.save(save_movie, writer = ffmpeg_writer); |
180
|
|
|
cluster_animation.save(save_movie, writer = 'ffmpeg', fps = 15, bitrate = 1500); |
181
|
|
|
else: |
182
|
|
|
plt.show(); |
183
|
|
|
|
184
|
|
|
|
185
|
|
|
class genetic_algorithm: |
186
|
|
|
"""! |
187
|
|
|
@brief Class represents Genetic clustering algorithm. |
188
|
|
|
@details The searching capability of genetic algorithms is exploited in order to search for appropriate |
189
|
|
|
cluster centres. |
190
|
|
|
|
191
|
|
|
""" |
192
|
|
|
|
193
|
|
|
def __init__(self, data, count_clusters, chromosome_count, population_count, count_mutation_gens=2, |
194
|
|
|
coeff_mutation_count=0.25, select_coeff=1.0, observer=ga_observer()): |
195
|
|
|
"""! |
196
|
|
|
@brief Initialize genetic clustering algorithm for cluster analysis. |
197
|
|
|
|
198
|
|
|
@param[in] data (numpy.array|list): Input data for clustering that is represented by two dimensional array |
199
|
|
|
where each row is a point, for example, [[0.0, 2.1], [0.1, 2.0], [-0.2, 2.4]]. |
200
|
|
|
@param[in] count_clusters (uint): Amount of clusters that should be allocated in the data. |
201
|
|
|
@param[in] chromosome_count (uint): Amount of chromosomes in each population. |
202
|
|
|
@param[in] population_count (uint): Amount of populations. |
203
|
|
|
@param[in] count_mutation_gens (uint): Amount of genes in chromosome that is mutated on each step. |
204
|
|
|
@param[in] coeff_mutation_count (float): Percent of chromosomes for mutation, destributed in range (0, 1] and |
205
|
|
|
thus amount of chromosomes is defined as follows: 'chromosome_count' * 'coeff_mutation_count'. |
206
|
|
|
@param[in] select_coeff (float): Exponential coefficient for selection procedure that is used as follows: |
207
|
|
|
math.exp(1 + fitness(chromosome) * select_coeff). |
208
|
|
|
|
209
|
|
|
""" |
210
|
|
|
|
211
|
|
|
# Initialize random |
212
|
|
|
np.random.seed() |
213
|
|
|
|
214
|
|
|
# Clustering data |
215
|
|
|
if type(data) is list: |
216
|
|
|
self.data = np.array(data) |
217
|
|
|
else: |
218
|
|
|
self.data = data |
219
|
|
|
|
220
|
|
|
# Count clusters |
221
|
|
|
self.count_clusters = count_clusters |
222
|
|
|
|
223
|
|
|
# Home many chromosome in population |
224
|
|
|
self.chromosome_count = chromosome_count |
225
|
|
|
|
226
|
|
|
# How many populations |
227
|
|
|
self.population_count = population_count |
228
|
|
|
|
229
|
|
|
# Count mutation genes |
230
|
|
|
self.count_mutation_gens = count_mutation_gens |
231
|
|
|
|
232
|
|
|
# Crossover rate |
233
|
|
|
self.crossover_rate = 1.0 |
234
|
|
|
|
235
|
|
|
# Count of chromosome for mutation (range [0, 1]) |
236
|
|
|
self.coeff_mutation_count = coeff_mutation_count |
237
|
|
|
|
238
|
|
|
# Exponential coeff for selection |
239
|
|
|
self.select_coeff = select_coeff |
240
|
|
|
|
241
|
|
|
# Result of clustering : best chromosome |
242
|
|
|
self.result_clustering = {'best_chromosome': [], |
243
|
|
|
'best_fitness_function': 0.0} |
244
|
|
|
|
245
|
|
|
# Observer |
246
|
|
|
self.observer = observer |
247
|
|
|
|
248
|
|
|
def process(self): |
249
|
|
|
"""! |
250
|
|
|
@brief Perform clustering procedure in line with rule of genetic clustering algorithm. |
251
|
|
|
|
252
|
|
|
@see get_clusters() |
253
|
|
|
|
254
|
|
|
""" |
255
|
|
|
|
256
|
|
|
# Initialize population |
257
|
|
|
chromosomes = self._init_population(self.count_clusters, len(self.data), self.chromosome_count) |
258
|
|
|
|
259
|
|
|
# Initialize the Best solution |
260
|
|
|
best_chromosome, best_ff, first_fitness_functions \ |
261
|
|
|
= self._get_best_chromosome(chromosomes, self.data, self.count_clusters) |
262
|
|
|
|
263
|
|
|
# Save best result into observer |
264
|
|
|
self.observer.collect_global_best(best_chromosome, best_ff) |
265
|
|
|
self.observer.collect_population_best(best_chromosome, best_ff) |
266
|
|
|
self.observer.collect_mean(first_fitness_functions) |
267
|
|
|
|
268
|
|
|
# Next population |
269
|
|
|
for _idx in range(self.population_count): |
|
|
|
|
270
|
|
|
|
271
|
|
|
# Select |
272
|
|
|
chromosomes = self._select(chromosomes, self.data, self.count_clusters, self.select_coeff) |
273
|
|
|
|
274
|
|
|
# Crossover |
275
|
|
|
self._crossover(chromosomes) |
276
|
|
|
|
277
|
|
|
# Mutation |
278
|
|
|
self._mutation(chromosomes, self.count_clusters, self.count_mutation_gens, self.coeff_mutation_count) |
279
|
|
|
|
280
|
|
|
# Update the Best Solution |
281
|
|
|
new_best_chromosome, new_best_ff, fitness_functions \ |
282
|
|
|
= self._get_best_chromosome(chromosomes, self.data, self.count_clusters) |
283
|
|
|
|
284
|
|
|
# Get best chromosome |
285
|
|
|
if new_best_ff < best_ff: |
286
|
|
|
best_ff = new_best_ff |
287
|
|
|
best_chromosome = new_best_chromosome |
288
|
|
|
|
289
|
|
|
# Save best result into observer |
290
|
|
|
self.observer.collect_global_best(best_chromosome, best_ff) |
291
|
|
|
self.observer.collect_population_best(new_best_chromosome, new_best_ff) |
292
|
|
|
self.observer.collect_mean(fitness_functions) |
293
|
|
|
|
294
|
|
|
# Save result |
295
|
|
|
self.result_clustering['best_chromosome'] = best_chromosome |
296
|
|
|
self.result_clustering['best_fitness_function'] = best_ff |
297
|
|
|
|
298
|
|
|
return best_chromosome, best_ff |
299
|
|
|
|
300
|
|
|
|
301
|
|
|
def get_observer(self): |
302
|
|
|
"""! |
303
|
|
|
@brief Returns genetic algorithm observer. |
304
|
|
|
|
305
|
|
|
""" |
306
|
|
|
return self.observer |
307
|
|
|
|
308
|
|
|
|
309
|
|
|
def get_clusters(self): |
310
|
|
|
"""! |
311
|
|
|
@brief Returns list of allocated clusters, each cluster contains indexes of objects from the data. |
312
|
|
|
|
313
|
|
|
@return (list) List of allocated clusters. |
314
|
|
|
|
315
|
|
|
@see process() |
316
|
|
|
|
317
|
|
|
""" |
318
|
|
|
|
319
|
|
|
return ga_math.get_clusters_representation(self.result_clustering['best_chromosome'], self.count_clusters) |
320
|
|
|
|
321
|
|
|
|
322
|
|
|
@staticmethod |
323
|
|
|
def _select(chromosomes, data, count_clusters, select_coeff): |
324
|
|
|
"""! |
325
|
|
|
@brief Performs selection procedure where new chromosomes are calculated. |
326
|
|
|
|
327
|
|
|
@param[in] chromosomes (numpy.array): Chromosomes |
328
|
|
|
|
329
|
|
|
""" |
330
|
|
|
|
331
|
|
|
# Calc centers |
332
|
|
|
centres = ga_math.get_centres(chromosomes, data, count_clusters) |
333
|
|
|
|
334
|
|
|
# Calc fitness functions |
335
|
|
|
fitness = genetic_algorithm._calc_fitness_function(centres, data, chromosomes) |
336
|
|
|
|
337
|
|
|
for _idx in range(len(fitness)): |
338
|
|
|
fitness[_idx] = math.exp(1 + fitness[_idx] * select_coeff) |
339
|
|
|
|
340
|
|
|
# Calc probability vector |
341
|
|
|
probabilities = ga_math.calc_probability_vector(fitness) |
342
|
|
|
|
343
|
|
|
# Select P chromosomes with probabilities |
344
|
|
|
new_chromosomes = np.zeros(chromosomes.shape, dtype=np.int) |
345
|
|
|
|
346
|
|
|
# Selecting |
347
|
|
|
for _idx in range(len(chromosomes)): |
348
|
|
|
new_chromosomes[_idx] = chromosomes[ga_math.get_uniform(probabilities)] |
349
|
|
|
|
350
|
|
|
return new_chromosomes |
351
|
|
|
|
352
|
|
|
|
353
|
|
|
@staticmethod |
354
|
|
|
def _crossover(chromosomes): |
355
|
|
|
"""! |
356
|
|
|
@brief Crossover procedure. |
357
|
|
|
|
358
|
|
|
""" |
359
|
|
|
|
360
|
|
|
# Get pairs to Crossover |
361
|
|
|
pairs_to_crossover = np.array(range(len(chromosomes))) |
362
|
|
|
|
363
|
|
|
# Set random pairs |
364
|
|
|
np.random.shuffle(pairs_to_crossover) |
365
|
|
|
|
366
|
|
|
# Index offset ( pairs_to_crossover split into 2 parts : [V1, V2, .. | P1, P2, ...] crossover between V<->P) |
367
|
|
|
offset_in_pair = int(len(pairs_to_crossover) / 2) |
368
|
|
|
|
369
|
|
|
# For each pair |
370
|
|
|
for _idx in range(offset_in_pair): |
371
|
|
|
|
372
|
|
|
# Generate random mask for crossover |
373
|
|
|
crossover_mask = genetic_algorithm._get_crossover_mask(len(chromosomes[_idx])) |
374
|
|
|
|
375
|
|
|
# Crossover a pair |
376
|
|
|
genetic_algorithm._crossover_a_pair(chromosomes[pairs_to_crossover[_idx]], |
377
|
|
|
chromosomes[pairs_to_crossover[_idx + offset_in_pair]], |
378
|
|
|
crossover_mask) |
379
|
|
|
|
380
|
|
|
|
381
|
|
|
@staticmethod |
382
|
|
|
def _mutation(chromosomes, count_clusters, count_gen_for_mutation, coeff_mutation_count): |
383
|
|
|
"""! |
384
|
|
|
@brief Mutation procedure. |
385
|
|
|
|
386
|
|
|
""" |
387
|
|
|
|
388
|
|
|
# Count gens in Chromosome |
389
|
|
|
count_gens = len(chromosomes[0]) |
390
|
|
|
|
391
|
|
|
# Get random chromosomes for mutation |
392
|
|
|
random_idx_chromosomes = np.array(range(len(chromosomes))) |
393
|
|
|
np.random.shuffle(random_idx_chromosomes) |
394
|
|
|
|
395
|
|
|
# |
396
|
|
|
for _idx_chromosome in range(int(len(random_idx_chromosomes) * coeff_mutation_count)): |
397
|
|
|
|
398
|
|
|
# |
399
|
|
|
for _ in range(count_gen_for_mutation): |
400
|
|
|
|
401
|
|
|
# Get random gen |
402
|
|
|
gen_num = np.random.randint(count_gens) |
403
|
|
|
|
404
|
|
|
# Set random cluster |
405
|
|
|
chromosomes[random_idx_chromosomes[_idx_chromosome]][gen_num] = np.random.randint(count_clusters) |
406
|
|
|
|
407
|
|
|
|
408
|
|
|
@staticmethod |
409
|
|
|
def _crossover_a_pair(chromosome_1, chromosome_2, mask): |
410
|
|
|
"""! |
411
|
|
|
@brief Crossovers a pair of chromosomes. |
412
|
|
|
|
413
|
|
|
@param[in] chromosome_1 (numpy.array): The first chromosome for crossover. |
414
|
|
|
@param[in] chromosome_2 (numpy.array): The second chromosome for crossover. |
415
|
|
|
@param[in] mask (numpy.array): Crossover mask that defines which genes should be swapped. |
416
|
|
|
|
417
|
|
|
""" |
418
|
|
|
|
419
|
|
|
for _idx in range(len(chromosome_1)): |
420
|
|
|
|
421
|
|
|
if mask[_idx] == 1: |
422
|
|
|
# Swap values |
423
|
|
|
chromosome_1[_idx], chromosome_2[_idx] = chromosome_2[_idx], chromosome_1[_idx] |
424
|
|
|
|
425
|
|
|
|
426
|
|
|
@staticmethod |
427
|
|
|
def _get_crossover_mask(mask_length): |
428
|
|
|
"""! |
429
|
|
|
@brief Crossover mask to crossover a pair of chromosomes. |
430
|
|
|
|
431
|
|
|
@param[in] mask_length (uint): Length of the mask. |
432
|
|
|
|
433
|
|
|
""" |
434
|
|
|
|
435
|
|
|
# Initialize mask |
436
|
|
|
mask = np.zeros(mask_length) |
437
|
|
|
|
438
|
|
|
# Set a half of array to 1 |
439
|
|
|
mask[:int(int(mask_length) / 6)] = 1 |
440
|
|
|
|
441
|
|
|
# Random shuffle |
442
|
|
|
np.random.shuffle(mask) |
443
|
|
|
|
444
|
|
|
return mask |
445
|
|
|
|
446
|
|
|
|
447
|
|
|
@staticmethod |
448
|
|
|
def _init_population(count_clusters, count_data, chromosome_count): |
449
|
|
|
"""! |
450
|
|
|
@brief Returns first population as a uniform random choice. |
451
|
|
|
|
452
|
|
|
@param[in] count_clusters (uint): |
453
|
|
|
@param[in] count_data (uint): |
454
|
|
|
@param[in] chromosome_count (uint): |
455
|
|
|
|
456
|
|
|
""" |
457
|
|
|
|
458
|
|
|
population = np.random.randint(count_clusters, size=(chromosome_count, count_data)) |
459
|
|
|
|
460
|
|
|
return population |
461
|
|
|
|
462
|
|
|
|
463
|
|
|
@staticmethod |
464
|
|
|
def _get_best_chromosome(chromosomes, data, count_clusters): |
465
|
|
|
"""! |
466
|
|
|
@brief |
467
|
|
|
|
468
|
|
|
""" |
469
|
|
|
|
470
|
|
|
# Calc centers |
471
|
|
|
centres = ga_math.get_centres(chromosomes, data, count_clusters) |
472
|
|
|
|
473
|
|
|
# Calc Fitness functions |
474
|
|
|
fitness_functions = genetic_algorithm._calc_fitness_function(centres, data, chromosomes) |
475
|
|
|
|
476
|
|
|
# Index of the best chromosome |
477
|
|
|
best_chromosome_idx = fitness_functions.argmin() |
478
|
|
|
|
479
|
|
|
# Get chromosome with the best fitness function |
480
|
|
|
return chromosomes[best_chromosome_idx], fitness_functions[best_chromosome_idx], fitness_functions |
481
|
|
|
|
482
|
|
|
|
483
|
|
|
@staticmethod |
484
|
|
|
def _calc_fitness_function(centres, data, chromosomes): |
485
|
|
|
"""! |
486
|
|
|
@brief |
487
|
|
|
|
488
|
|
|
""" |
489
|
|
|
|
490
|
|
|
# Get count of chromosomes and clusters |
491
|
|
|
count_chromosome = len(chromosomes) |
492
|
|
|
|
493
|
|
|
# Initialize fitness function values |
494
|
|
|
fitness_function = np.zeros(count_chromosome) |
495
|
|
|
|
496
|
|
|
# Calc fitness function for each chromosome |
497
|
|
|
for _idx_chromosome in range(count_chromosome): |
498
|
|
|
|
499
|
|
|
# Get centers for a selected chromosome |
500
|
|
|
centres_data = np.zeros(data.shape) |
501
|
|
|
|
502
|
|
|
# Fill data centres |
503
|
|
|
for _idx in range(len(data)): |
504
|
|
|
centres_data[_idx] = centres[_idx_chromosome][chromosomes[_idx_chromosome][_idx]] |
505
|
|
|
|
506
|
|
|
# Get City Block distance for a chromosome |
507
|
|
|
fitness_function[_idx_chromosome] += np.sum(abs(data - centres_data)) |
508
|
|
|
|
509
|
|
|
return fitness_function |
510
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.