|
1
|
|
|
"""! |
|
2
|
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: Genetic clustering algorithm (GA). |
|
4
|
|
|
|
|
5
|
|
|
@authors Aleksey Kukushkin ([email protected]) |
|
6
|
|
|
@date 2014-2017 |
|
7
|
|
|
@copyright GNU Public License |
|
8
|
|
|
|
|
9
|
|
|
@cond GNU_PUBLIC_LICENSE |
|
10
|
|
|
PyClustering is free software: you can redistribute it and/or modify |
|
11
|
|
|
it under the terms of the GNU General Public License as published by |
|
12
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
13
|
|
|
(at your option) any later version. |
|
14
|
|
|
|
|
15
|
|
|
PyClustering is distributed in the hope that it will be useful, |
|
16
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
17
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
18
|
|
|
GNU General Public License for more details. |
|
19
|
|
|
|
|
20
|
|
|
You should have received a copy of the GNU General Public License |
|
21
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
22
|
|
|
@endcond |
|
23
|
|
|
|
|
24
|
|
|
""" |
|
25
|
|
|
|
|
26
|
|
|
import numpy as np; |
|
|
|
|
|
|
27
|
|
|
import math; |
|
28
|
|
|
|
|
29
|
|
|
from pyclustering.cluster.ga_maths import ga_math; |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class genetic_algorithm: |
|
33
|
|
|
"""! |
|
34
|
|
|
@brief Class represents Genetic clustering algorithm. |
|
35
|
|
|
@details The searching capability of genetic algorithms is exploited in order to search for appropriate cluster centres. |
|
36
|
|
|
|
|
37
|
|
|
""" |
|
38
|
|
|
|
|
39
|
|
|
def __init__(self, data, count_clusters, chromosome_count, population_count, count_mutation_gens=2, |
|
40
|
|
|
coeff_mutation_count=0.25, select_coeff=1.0): |
|
41
|
|
|
"""! |
|
42
|
|
|
@brief Initialize genetic clustering algorithm for cluster analysis. |
|
43
|
|
|
|
|
44
|
|
|
@param[in] data (numpy.array|list): Input data for clustering that is represented by two dimensional array where each row is a point, |
|
45
|
|
|
for example, [[0.0, 2.1], [0.1, 2.0], [-0.2, 2.4]]. |
|
46
|
|
|
@param[in] count_clusters (uint): Amount of clusters that should be allocated in the data. |
|
47
|
|
|
@param[in] chromosome_count (uint): Amount of chromosomes in each population. |
|
48
|
|
|
@param[in] population_count (uint): Amount of populations. |
|
49
|
|
|
@param[in] count_mutation_gens (uint): Amount of genes in chromosome that is mutated on each step. |
|
50
|
|
|
@param[in] coeff_mutation_count (float): Percent of chromosomes for mutation, destributed in range (0, 1] and |
|
51
|
|
|
thus amount of chromosomes is defined as follows: 'chromosome_count' * 'coeff_mutation_count'. |
|
52
|
|
|
@param[in] select_coeff (float): Exponential coefficient for selection procedure that is used as follows: math.exp(1 + fitness(chromosome) * select_coeff). |
|
53
|
|
|
|
|
54
|
|
|
""" |
|
55
|
|
|
|
|
56
|
|
|
# Initialize random |
|
57
|
|
|
np.random.seed() |
|
58
|
|
|
|
|
59
|
|
|
# Clustering data |
|
60
|
|
|
if type(data) is list: |
|
61
|
|
|
self.data = np.array(data) |
|
62
|
|
|
else: |
|
63
|
|
|
self.data = data |
|
64
|
|
|
|
|
65
|
|
|
# Count clusters |
|
66
|
|
|
self.count_clusters = count_clusters |
|
67
|
|
|
|
|
68
|
|
|
# Home many chromosome in population |
|
69
|
|
|
self.chromosome_count = chromosome_count |
|
70
|
|
|
|
|
71
|
|
|
# How many populations |
|
72
|
|
|
self.population_count = population_count |
|
73
|
|
|
|
|
74
|
|
|
# Count mutation genes |
|
75
|
|
|
self.count_mutation_gens = count_mutation_gens |
|
76
|
|
|
|
|
77
|
|
|
# Crossover rate |
|
78
|
|
|
self.crossover_rate = 1.0 |
|
79
|
|
|
|
|
80
|
|
|
# Count of chromosome for mutation (range [0, 1]) |
|
81
|
|
|
self.coeff_mutation_count = coeff_mutation_count |
|
82
|
|
|
|
|
83
|
|
|
# Exponential coeff for selection |
|
84
|
|
|
self.select_coeff = select_coeff |
|
85
|
|
|
|
|
86
|
|
|
|
|
87
|
|
|
def process(self): |
|
88
|
|
|
"""! |
|
89
|
|
|
@brief Perform clustering procedure in line with rule of genetic clustering algorithm. |
|
90
|
|
|
|
|
91
|
|
|
@see get_clusters() |
|
92
|
|
|
|
|
93
|
|
|
""" |
|
94
|
|
|
|
|
95
|
|
|
# Initialize population |
|
96
|
|
|
chromosomes = self._init_population(self.count_clusters, len(self.data), self.chromosome_count) |
|
97
|
|
|
|
|
98
|
|
|
# Initialize the Best solution |
|
99
|
|
|
best_chromosome, best_ff = self._get_best_chromosome(chromosomes, self.data, self.count_clusters) |
|
100
|
|
|
|
|
101
|
|
|
# Next population |
|
102
|
|
|
for _ in range(self.population_count): |
|
103
|
|
|
|
|
104
|
|
|
# Select |
|
105
|
|
|
chromosomes = self._select(chromosomes, self.data, self.count_clusters, self.select_coeff) |
|
106
|
|
|
|
|
107
|
|
|
# Crossover |
|
108
|
|
|
self._crossover(chromosomes) |
|
109
|
|
|
|
|
110
|
|
|
# Mutation |
|
111
|
|
|
self._mutation(chromosomes, self.count_clusters, self.count_mutation_gens, self.coeff_mutation_count) |
|
112
|
|
|
|
|
113
|
|
|
# Update the Best Solution |
|
114
|
|
|
new_best_chromosome, new_best_ff = self._get_best_chromosome(chromosomes, self.data, self.count_clusters) |
|
115
|
|
|
|
|
116
|
|
|
# Get best chromosome |
|
117
|
|
|
if new_best_ff < best_ff: |
|
118
|
|
|
best_ff = new_best_ff |
|
119
|
|
|
best_chromosome = new_best_chromosome |
|
120
|
|
|
|
|
121
|
|
|
return best_chromosome, best_ff |
|
122
|
|
|
|
|
123
|
|
View Code Duplication |
|
|
|
|
|
|
|
124
|
|
|
def get_clusters(self): |
|
125
|
|
|
"""! |
|
126
|
|
|
@brief Returns list of allocated clusters, each cluster contains indexes of objects from the data. |
|
127
|
|
|
|
|
128
|
|
|
@return (list) List of allocated clusters. |
|
129
|
|
|
|
|
130
|
|
|
@see process() |
|
131
|
|
|
|
|
132
|
|
|
""" |
|
133
|
|
|
|
|
134
|
|
|
raise NameError("Implementation is require."); |
|
135
|
|
|
|
|
136
|
|
|
|
|
137
|
|
|
@staticmethod |
|
138
|
|
|
def _select(chromosomes, data, count_clusters, select_coeff): |
|
139
|
|
|
"""! |
|
140
|
|
|
@brief Performs selection procedure where new chromosomes are calculated. |
|
141
|
|
|
|
|
142
|
|
|
@param[in] chromosomes (numpy.array): Chromosomes |
|
143
|
|
|
|
|
144
|
|
|
""" |
|
145
|
|
|
|
|
146
|
|
|
# Calc centers |
|
147
|
|
View Code Duplication |
centres = ga_math.get_centres(chromosomes, data, count_clusters) |
|
|
|
|
|
|
148
|
|
|
|
|
149
|
|
|
# Calc fitness functions |
|
150
|
|
|
fitness = genetic_algorithm._calc_fitness_function(centres, data, chromosomes) |
|
151
|
|
|
|
|
152
|
|
|
for _idx in range(len(fitness)): |
|
153
|
|
|
fitness[_idx] = math.exp(1 + fitness[_idx] * select_coeff) |
|
154
|
|
|
|
|
155
|
|
|
# Calc probability vector |
|
156
|
|
|
probabilities = ga_math.calc_probability_vector(fitness) |
|
157
|
|
|
|
|
158
|
|
|
# Select P chromosomes with probabilities |
|
159
|
|
|
new_chromosomes = np.zeros(chromosomes.shape, dtype=np.int) |
|
160
|
|
|
|
|
161
|
|
|
# Selecting |
|
162
|
|
|
for _idx in range(len(chromosomes)): |
|
163
|
|
|
new_chromosomes[_idx] = chromosomes[ga_math.get_uniform(probabilities)] |
|
164
|
|
|
|
|
165
|
|
|
return new_chromosomes |
|
166
|
|
|
|
|
167
|
|
|
|
|
168
|
|
|
@staticmethod |
|
169
|
|
|
def _crossover(chromosomes): |
|
170
|
|
|
"""! |
|
171
|
|
|
@brief Crossover procedure. |
|
172
|
|
|
|
|
173
|
|
|
""" |
|
174
|
|
|
|
|
175
|
|
|
# Get pairs to Crossover |
|
176
|
|
|
pairs_to_crossover = np.array(range(len(chromosomes))) |
|
177
|
|
|
|
|
178
|
|
|
# Set random pairs |
|
179
|
|
|
np.random.shuffle(pairs_to_crossover) |
|
180
|
|
|
|
|
181
|
|
|
# Index offset ( pairs_to_crossover split into 2 parts : [V1, V2, .. | P1, P2, ...] crossover between V<->P) |
|
182
|
|
|
offset_in_pair = int(len(pairs_to_crossover) / 2) |
|
183
|
|
|
|
|
184
|
|
|
# For each pair |
|
185
|
|
|
for _idx in range(offset_in_pair): |
|
186
|
|
|
|
|
187
|
|
|
# Generate random mask for crossover |
|
188
|
|
|
crossover_mask = genetic_algorithm._get_crossover_mask(len(chromosomes[_idx])) |
|
189
|
|
|
|
|
190
|
|
|
# Crossover a pair |
|
191
|
|
|
genetic_algorithm._crossover_a_pair(chromosomes[pairs_to_crossover[_idx]], |
|
192
|
|
|
chromosomes[pairs_to_crossover[_idx + offset_in_pair]], |
|
193
|
|
|
crossover_mask) |
|
194
|
|
|
|
|
195
|
|
|
@staticmethod |
|
196
|
|
|
def _mutation(chromosomes, count_clusters, count_gen_for_mutation, coeff_mutation_count): |
|
197
|
|
|
"""! |
|
198
|
|
|
@brief Mutation procedure. |
|
199
|
|
|
|
|
200
|
|
|
""" |
|
201
|
|
|
|
|
202
|
|
|
# Count gens in Chromosome |
|
203
|
|
|
count_gens = len(chromosomes[0]) |
|
204
|
|
|
|
|
205
|
|
|
# Get random chromosomes for mutation |
|
206
|
|
|
random_idx_chromosomes = np.array(range(len(chromosomes))) |
|
207
|
|
|
np.random.shuffle(random_idx_chromosomes) |
|
208
|
|
|
|
|
209
|
|
|
# |
|
210
|
|
|
for _idx_chromosome in range(int(len(random_idx_chromosomes) * coeff_mutation_count)): |
|
211
|
|
|
|
|
212
|
|
|
# |
|
213
|
|
|
for _ in range(count_gen_for_mutation): |
|
214
|
|
|
|
|
215
|
|
|
# Get random gen |
|
216
|
|
|
gen_num = np.random.randint(count_gens) |
|
217
|
|
|
|
|
218
|
|
|
# Set random cluster |
|
219
|
|
|
chromosomes[random_idx_chromosomes[_idx_chromosome]][gen_num] = np.random.randint(count_clusters) |
|
220
|
|
|
|
|
221
|
|
|
|
|
222
|
|
|
@staticmethod |
|
223
|
|
|
def _crossover_a_pair(chromosome_1, chromosome_2, mask): |
|
224
|
|
|
"""! |
|
225
|
|
|
@brief Crossovers a pair of chromosomes. |
|
226
|
|
|
|
|
227
|
|
|
@param[in] chromosome_1 (numpy.array): The first chromosome for crossover. |
|
228
|
|
|
@param[in] chromosome_2 (numpy.array): The second chromosome for crossover. |
|
229
|
|
|
@param[in] mask (numpy.array): Crossover mask that defines which genes should be swapped. |
|
230
|
|
|
|
|
231
|
|
|
""" |
|
232
|
|
|
|
|
233
|
|
|
for _idx in range(len(chromosome_1)): |
|
234
|
|
|
|
|
235
|
|
|
if mask[_idx] == 1: |
|
236
|
|
|
# Swap values |
|
237
|
|
|
chromosome_1[_idx], chromosome_2[_idx] = chromosome_2[_idx], chromosome_1[_idx] |
|
238
|
|
|
|
|
239
|
|
|
|
|
240
|
|
|
@staticmethod |
|
241
|
|
|
def _get_crossover_mask(mask_length): |
|
242
|
|
|
"""! |
|
243
|
|
|
@brief Crossover mask to crossover a pair of chromosomes. |
|
244
|
|
|
|
|
245
|
|
|
@param[in] mask_length (uint): Length of the mask. |
|
246
|
|
|
|
|
247
|
|
|
""" |
|
248
|
|
|
|
|
249
|
|
|
# Initialize mask |
|
250
|
|
|
mask = np.zeros(mask_length) |
|
251
|
|
|
|
|
252
|
|
|
# Set a half of array to 1 |
|
253
|
|
|
mask[:int(int(mask_length) / 6)] = 1 |
|
254
|
|
|
|
|
255
|
|
|
# Random shuffle |
|
256
|
|
|
np.random.shuffle(mask) |
|
257
|
|
|
|
|
258
|
|
|
return mask |
|
259
|
|
|
|
|
260
|
|
|
|
|
261
|
|
|
@staticmethod |
|
262
|
|
|
def _init_population(count_clusters, count_data, chromosome_count): |
|
263
|
|
|
"""! |
|
264
|
|
|
@brief Returns first population as a uniform random choice. |
|
265
|
|
|
|
|
266
|
|
|
@param[in] count_clusters (uint): |
|
267
|
|
|
@param[in] count_data (uint): |
|
268
|
|
|
@param[in] chromosome_count (uint): |
|
269
|
|
|
|
|
270
|
|
|
""" |
|
271
|
|
|
|
|
272
|
|
|
population = np.random.randint(count_clusters, size=(chromosome_count, count_data)) |
|
273
|
|
|
|
|
274
|
|
|
return population |
|
275
|
|
|
|
|
276
|
|
|
|
|
277
|
|
|
@staticmethod |
|
278
|
|
|
def _get_best_chromosome(chromosomes, data, count_clusters): |
|
279
|
|
|
"""! |
|
280
|
|
|
@brief |
|
281
|
|
|
|
|
282
|
|
|
""" |
|
283
|
|
|
|
|
284
|
|
|
# Calc centers |
|
285
|
|
|
centres = ga_math.get_centres(chromosomes, data, count_clusters) |
|
286
|
|
|
|
|
287
|
|
|
# Calc Fitness functions |
|
288
|
|
|
fitness_function = genetic_algorithm._calc_fitness_function(centres, data, chromosomes) |
|
289
|
|
|
|
|
290
|
|
|
# Index of the best chromosome |
|
291
|
|
|
best_chromosome_idx = fitness_function.argmin() |
|
292
|
|
|
|
|
293
|
|
|
# Get chromosome with the best fitness function |
|
294
|
|
|
return chromosomes[best_chromosome_idx], fitness_function[best_chromosome_idx] |
|
295
|
|
|
|
|
296
|
|
|
|
|
297
|
|
|
@staticmethod |
|
298
|
|
|
def _calc_fitness_function(centres, data, chromosomes): |
|
299
|
|
|
"""! |
|
300
|
|
|
@brief |
|
301
|
|
|
|
|
302
|
|
|
""" |
|
303
|
|
|
|
|
304
|
|
|
# Get count of chromosomes and clusters |
|
305
|
|
|
count_chromosome = len(chromosomes) |
|
306
|
|
|
|
|
307
|
|
|
# Initialize fitness function values |
|
308
|
|
|
fitness_function = np.zeros(count_chromosome) |
|
309
|
|
|
|
|
310
|
|
|
# Calc fitness function for each chromosome |
|
311
|
|
|
for _idx_chromosome in range(count_chromosome): |
|
312
|
|
|
|
|
313
|
|
|
# Get centers for a selected chromosome |
|
314
|
|
|
centres_data = np.zeros(data.shape) |
|
315
|
|
|
|
|
316
|
|
|
# Fill data centres |
|
317
|
|
|
for _idx in range(len(data)): |
|
318
|
|
|
centres_data[_idx] = centres[_idx_chromosome][chromosomes[_idx_chromosome][_idx]] |
|
319
|
|
|
|
|
320
|
|
|
# Get City Block distance for a chromosome |
|
321
|
|
|
fitness_function[_idx_chromosome] += np.sum(abs(data - centres_data)) |
|
322
|
|
|
|
|
323
|
|
|
return fitness_function |
|
324
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.