1
|
|
|
|
2
|
|
|
import numpy as np |
|
|
|
|
3
|
|
|
|
4
|
|
|
|
5
|
|
|
class ga_math: |
6
|
|
|
""" |
7
|
|
|
""" |
8
|
|
|
|
9
|
|
|
@staticmethod |
10
|
|
|
def get_centres(chromosomes, data, count_clusters): |
11
|
|
|
""" """ |
12
|
|
|
|
13
|
|
|
centres = ga_math.calc_centers(chromosomes, data, count_clusters) |
14
|
|
|
|
15
|
|
|
return centres |
16
|
|
|
|
17
|
|
|
@staticmethod |
18
|
|
|
def calc_centers(chromosomes, data, count_clusters): |
19
|
|
|
""" """ |
20
|
|
|
|
21
|
|
|
# Initialize center |
22
|
|
|
centers = np.zeros(shape=(len(chromosomes), count_clusters, len(data[0]))) |
23
|
|
|
|
24
|
|
|
for _idx_chromosome in range(len(chromosomes)): |
25
|
|
|
|
26
|
|
|
# Get count data in clusters |
27
|
|
|
count_data_in_cluster = np.zeros(count_clusters) |
28
|
|
|
|
29
|
|
|
# Next data point |
30
|
|
|
for _idx in range(len(chromosomes[_idx_chromosome])): |
31
|
|
|
|
32
|
|
|
cluster_num = chromosomes[_idx_chromosome][_idx] |
33
|
|
|
|
34
|
|
|
centers[_idx_chromosome][cluster_num] += data[_idx] |
35
|
|
|
count_data_in_cluster[cluster_num] += 1 |
36
|
|
|
|
37
|
|
|
for _idx_cluster in range(count_clusters): |
38
|
|
|
if count_data_in_cluster[_idx_cluster] != 0: |
39
|
|
|
centers[_idx_chromosome][_idx_cluster] /= count_data_in_cluster[_idx_cluster] |
40
|
|
|
|
41
|
|
|
return centers |
42
|
|
|
|
43
|
|
|
@staticmethod |
44
|
|
|
def calc_probability_vector(fitness): |
45
|
|
|
""" """ |
46
|
|
|
|
47
|
|
|
if len(fitness) == 0: |
48
|
|
|
raise AttributeError("Has no any fitness functions.") |
49
|
|
|
|
50
|
|
|
# Get 1/fitness function |
51
|
|
|
inv_fitness = np.zeros(len(fitness)) |
52
|
|
|
|
53
|
|
|
# |
54
|
|
|
for _idx in range(len(inv_fitness)): |
55
|
|
|
|
56
|
|
|
if fitness[_idx] != 0.0: |
57
|
|
|
inv_fitness[_idx] = 1.0 / fitness[_idx] |
58
|
|
|
else: |
59
|
|
|
inv_fitness[_idx] = 0.0 |
60
|
|
|
|
61
|
|
|
# Initialize vector |
62
|
|
|
prob = np.zeros(len(fitness)) |
63
|
|
|
|
64
|
|
|
# Initialize first element |
65
|
|
|
prob[0] = inv_fitness[0] |
66
|
|
|
|
67
|
|
|
# Accumulate values in probability vector |
68
|
|
|
for _idx in range(1, len(inv_fitness)): |
69
|
|
|
prob[_idx] = prob[_idx - 1] + inv_fitness[_idx] |
70
|
|
|
|
71
|
|
|
# Normalize |
72
|
|
|
prob /= prob[-1] |
73
|
|
|
|
74
|
|
|
ga_math.set_last_value_to_one(prob) |
75
|
|
|
|
76
|
|
|
return prob |
77
|
|
|
|
78
|
|
|
@staticmethod |
79
|
|
|
def set_last_value_to_one(probabilities): |
80
|
|
|
"""! |
81
|
|
|
@brief Update the last same probabilities to one. |
82
|
|
|
@details All values of probability list equals to the last element are set to 1. |
83
|
|
|
""" |
84
|
|
|
|
85
|
|
|
# Start from the last elem |
86
|
|
|
back_idx = - 1 |
87
|
|
|
|
88
|
|
|
# All values equal to the last elem should be set to 1 |
89
|
|
|
last_val = probabilities[back_idx] |
90
|
|
|
|
91
|
|
|
# for all elements or if a elem not equal to the last elem |
92
|
|
|
for _ in range(-1, -len(probabilities) - 1): |
93
|
|
|
if probabilities[back_idx] == last_val: |
94
|
|
|
probabilities[back_idx] = 1 |
95
|
|
|
else: |
96
|
|
|
break |
97
|
|
|
|
98
|
|
|
@staticmethod |
99
|
|
|
def get_uniform(probabilities): |
100
|
|
|
"""! |
101
|
|
|
@brief Returns index in probabilities. |
102
|
|
|
|
103
|
|
|
@param[in] probabilities (list): List with segments in increasing sequence with val in [0, 1], |
104
|
|
|
for example, [0 0.1 0.2 0.3 1.0]. |
105
|
|
|
""" |
106
|
|
|
|
107
|
|
|
# Initialize return value |
108
|
|
|
res_idx = None |
109
|
|
|
|
110
|
|
|
# Get random num in range [0, 1) |
111
|
|
|
random_num = np.random.rand() |
112
|
|
|
|
113
|
|
|
# Find segment with val1 < random_num < val2 |
114
|
|
|
for _idx in range(len(probabilities)): |
115
|
|
|
if random_num < probabilities[_idx]: |
116
|
|
|
res_idx = _idx |
117
|
|
|
break |
118
|
|
|
|
119
|
|
|
if res_idx is None: |
120
|
|
|
print('Probabilities : ', probabilities) |
121
|
|
|
raise AttributeError("'probabilities' should contain 1 as the end of last segment(s)") |
122
|
|
|
|
123
|
|
|
return res_idx |
124
|
|
|
|
125
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.