1
|
|
|
"""! |
2
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: MBSAS (Modified Basic Sequential Algorithmic Scheme). |
4
|
|
|
@details Implementation based on book: |
5
|
|
|
- Theodoridis, Koutroumbas, Konstantinos. Elsevier Academic Press - Pattern Recognition - 2nd Edition. 2003. |
6
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected]) |
8
|
|
|
@date 2014-2018 |
9
|
|
|
@copyright GNU Public License |
10
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE |
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify |
13
|
|
|
it under the terms of the GNU General Public License as published by |
14
|
|
|
the Free Software Foundation, either version 3 of the License, or |
15
|
|
|
(at your option) any later version. |
16
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful, |
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
20
|
|
|
GNU General Public License for more details. |
21
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License |
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
24
|
|
|
@endcond |
25
|
|
|
|
26
|
|
|
""" |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
from pyclustering.cluster.bsas import bsas; |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class mbsas(bsas): |
33
|
|
|
def __init__(self, data, maximum_clusters, threshold, ccore=True, **kwargs): |
34
|
|
|
super().__init__(data, maximum_clusters, threshold, ccore, **kwargs); |
35
|
|
|
|
36
|
|
|
def process(self): |
37
|
|
|
self._clusters.append([0]); |
38
|
|
|
self._representatives.append(self._data[0]); |
39
|
|
|
|
40
|
|
|
skipped_objects = []; |
41
|
|
|
|
42
|
|
|
for i in range(1, len(self._data)): |
43
|
|
|
point = self._data[i]; |
44
|
|
|
index_cluster, distance = self._find_nearest_cluster(point); |
45
|
|
|
|
46
|
|
|
if (distance > self._threshold) and (len(self._clusters) < self._amount): |
47
|
|
|
self._representatives.append(point); |
48
|
|
|
self._clusters.append([i]); |
49
|
|
|
else: |
50
|
|
|
skipped_objects.append(i); |
51
|
|
|
|
52
|
|
|
for i in skipped_objects: |
53
|
|
|
point = self._data[i]; |
54
|
|
|
index_cluster, _ = self._find_nearest_cluster(point); |
55
|
|
|
|
56
|
|
|
self._clusters[index_cluster].append(i); |
57
|
|
|
self._update_representative(index_cluster, point); |
58
|
|
|
|
59
|
|
|
|