1
|
|
|
"""!
|
2
|
|
|
|
3
|
|
|
@brief Cluster analysis algorithm: Expectation-Maximization Algorithm (EMA).
|
4
|
|
|
@details Implementation based on article:
|
5
|
|
|
-
|
6
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected])
|
8
|
|
|
@date 2014-2017
|
9
|
|
|
@copyright GNU Public License
|
10
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE
|
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
13
|
|
|
it under the terms of the GNU General Public License as published by
|
14
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
15
|
|
|
(at your option) any later version.
|
16
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
20
|
|
|
GNU General Public License for more details.
|
21
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License
|
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
24
|
|
|
@endcond
|
25
|
|
|
|
26
|
|
|
"""
|
27
|
|
|
|
28
|
|
|
|
29
|
|
|
import numpy;
|
|
|
|
|
30
|
|
|
|
31
|
|
|
from pyclustering.utils import pi;
|
32
|
|
|
|
33
|
|
|
import matplotlib.pyplot as plt;
|
|
|
|
|
34
|
|
|
from _operator import index
|
|
|
|
|
35
|
|
|
|
36
|
|
|
|
37
|
|
|
def gaussian(data, mean = None, covariance = None):
|
38
|
|
|
dimension = len(data[0]);
|
39
|
|
|
|
40
|
|
|
if (mean is None):
|
41
|
|
|
mean = numpy.mean(data);
|
42
|
|
|
|
43
|
|
|
if (covariance is None):
|
44
|
|
|
covariance = numpy.cov(data, rowvar = False);
|
45
|
|
|
|
46
|
|
|
inv_variance = numpy.linalg.inv(covariance);
|
47
|
|
|
right_const = 1.0 / ( (pi * 2.0) ** (dimension / 2.0) * numpy.linalg.norm(covariance) ** 0.5 );
|
48
|
|
|
|
49
|
|
|
result = [];
|
50
|
|
|
|
51
|
|
|
for point in data:
|
52
|
|
|
mean_delta = point - mean;
|
53
|
|
|
point_gaussian = right_const * numpy.exp( -0.5 * mean_delta.dot(inv_variance).dot(numpy.transpose(mean_delta)) );
|
54
|
|
|
result.append(point_gaussian);
|
55
|
|
|
|
56
|
|
|
return result;
|
57
|
|
|
|
58
|
|
|
|
59
|
|
|
class ema:
|
60
|
|
|
def __init__(self, data, amount_clusters, means = None, variances = None):
|
61
|
|
|
self.__data = numpy.array(data);
|
62
|
|
|
self.__amount_clusters = amount_clusters;
|
63
|
|
|
|
64
|
|
|
self.__means = means;
|
65
|
|
|
if (means is None):
|
66
|
|
|
self.__means = self.__get_random_means(data, amount_clusters);
|
67
|
|
|
|
68
|
|
|
self.__variances = variances;
|
69
|
|
|
if (variances is None):
|
70
|
|
|
self.__variances = self.__get_random_covariances(data, amount_clusters);
|
71
|
|
|
|
72
|
|
|
self.__rc = [ [0.0] * len(self.__data) for _ in range(amount_clusters) ];
|
73
|
|
|
self.__pic = [1.0] * amount_clusters;
|
74
|
|
|
self.__clusters = [];
|
75
|
|
|
self.__gaussians = [ [] for _ in range(amount_clusters) ];
|
76
|
|
|
self.__stop = False;
|
77
|
|
|
|
78
|
|
|
|
79
|
|
|
def process(self):
|
80
|
|
|
self.__clusters = None;
|
81
|
|
|
|
82
|
|
|
previous_likelihood = -10000500;
|
83
|
|
|
current_likelihood = -10000000;
|
84
|
|
|
|
85
|
|
|
while((self.__stop is False) and (abs(numpy.min(previous_likelihood) - numpy.min(current_likelihood)) > 0.00001) and (current_likelihood < 0.0)):
|
86
|
|
|
self.__expectation_step();
|
87
|
|
|
self.__maximization_step();
|
88
|
|
|
|
89
|
|
|
previous_likelihood = current_likelihood;
|
90
|
|
|
current_likelihood = self.__log_likelihood();
|
91
|
|
|
self.__stop = self.__get_stop_flag();
|
92
|
|
|
print(previous_likelihood, current_likelihood);
|
93
|
|
|
|
94
|
|
|
|
95
|
|
|
def get_clusters(self):
|
96
|
|
|
if (self.__clusters is not None):
|
97
|
|
|
return self.__clusters;
|
98
|
|
|
|
99
|
|
|
self.__clusters= [];
|
100
|
|
|
for index_cluster in range(self.__amount_clusters):
|
101
|
|
|
cluster = [];
|
102
|
|
|
for index_point in range(len(self.__data)):
|
103
|
|
|
if (self.__rc[index_cluster][index_point] >= 0.5):
|
104
|
|
|
cluster.append(index_point);
|
105
|
|
|
|
106
|
|
|
self.__clusters.append(cluster);
|
107
|
|
|
|
108
|
|
|
return self.__clusters;
|
109
|
|
|
|
110
|
|
|
|
111
|
|
|
def get_centers(self):
|
112
|
|
|
return self.__means;
|
113
|
|
|
|
114
|
|
|
|
115
|
|
|
def get_covariances(self):
|
116
|
|
|
return self.__variances;
|
117
|
|
|
|
118
|
|
|
|
119
|
|
|
def __log_likelihood(self):
|
120
|
|
|
likelihood = 0.0;
|
121
|
|
|
|
122
|
|
|
for index_point in range(len(self.__data)):
|
123
|
|
|
particle = 0.0;
|
124
|
|
|
for index_cluster in range(self.__amount_clusters):
|
125
|
|
|
particle += self.__pic[index_cluster] * self.__gaussians[index_cluster][index_point];
|
126
|
|
|
|
127
|
|
|
likelihood += numpy.log(particle);
|
128
|
|
|
|
129
|
|
|
return likelihood;
|
130
|
|
|
|
131
|
|
|
|
132
|
|
|
def __probabilities(self, index_cluster, index_point):
|
133
|
|
|
divider = 0.0;
|
134
|
|
|
for i in range(self.__amount_clusters):
|
135
|
|
|
divider += self.__pic[i] * self.__gaussians[i][index_point];
|
136
|
|
|
|
137
|
|
|
rc = self.__pic[index_cluster] * self.__gaussians[index_cluster][index_point] / divider;
|
138
|
|
|
return rc;
|
139
|
|
|
|
140
|
|
|
|
141
|
|
|
def __expectation_step(self):
|
142
|
|
|
for index in range(self.__amount_clusters):
|
|
|
|
|
143
|
|
|
self.__gaussians[index] = gaussian(self.__data, self.__means[index], self.__variances[index]);
|
144
|
|
|
|
145
|
|
|
for index_cluster in range(self.__amount_clusters):
|
146
|
|
|
for index_point in range(len(self.__data)):
|
147
|
|
|
self.__rc[index_cluster][index_point] = self.__probabilities(index_cluster, index_point);
|
148
|
|
|
print(self.__rc[index_cluster]);
|
149
|
|
|
|
150
|
|
|
|
151
|
|
|
def __maximization_step(self):
|
152
|
|
|
for index_cluster in range(self.__amount_clusters):
|
153
|
|
|
mc = numpy.sum(self.__rc[index_cluster]);
|
154
|
|
|
|
155
|
|
|
self.__pic[index_cluster] = mc / len(self.__data);
|
156
|
|
|
self.__means[index_cluster] = self.__update_mean(index_cluster, mc);
|
157
|
|
|
|
158
|
|
|
self.__variances[index_cluster] = self.__update_covariance(index_cluster, mc);
|
159
|
|
|
|
160
|
|
|
|
161
|
|
|
def __get_stop_flag(self):
|
162
|
|
|
for covariance in self.__variances:
|
163
|
|
|
print(covariance[0])
|
164
|
|
|
if (min(covariance[0]) == 0):
|
165
|
|
|
return True;
|
166
|
|
|
|
167
|
|
|
return False;
|
168
|
|
|
|
169
|
|
|
|
170
|
|
|
def __update_covariance(self, index_cluster, mc):
|
171
|
|
|
covariance = 0.0;
|
172
|
|
|
for index_point in range(len(self.__data)):
|
173
|
|
|
deviation = numpy.array( [ self.__data[index_point] - self.__means[index_cluster] ]);
|
174
|
|
|
covariance += self.__rc[index_cluster][index_point] * deviation.T.dot(deviation);
|
175
|
|
|
|
176
|
|
|
covariance = covariance / mc;
|
177
|
|
|
return covariance;
|
178
|
|
|
|
179
|
|
|
|
180
|
|
|
def __update_mean(self, index_cluster, mc):
|
181
|
|
|
mean = 0.0;
|
182
|
|
|
for index_point in range(len(self.__data)):
|
183
|
|
|
mean += self.__rc[index_cluster][index_point] * self.__data[index_point];
|
184
|
|
|
|
185
|
|
|
mean = mean / mc;
|
186
|
|
|
return mean;
|
187
|
|
|
|
188
|
|
|
|
189
|
|
|
def __get_random_covariances(self, data, amount):
|
190
|
|
|
covariances = [];
|
191
|
|
|
data_covariance = numpy.cov(data, rowvar = False);
|
192
|
|
|
for _ in range(amount):
|
193
|
|
|
random_appendix = numpy.min(data_covariance) * 0.2 * numpy.random.random();
|
194
|
|
|
covariances.append(data_covariance + random_appendix);
|
195
|
|
|
|
196
|
|
|
return covariances;
|
197
|
|
|
|
198
|
|
|
|
199
|
|
|
def __get_random_means(self, data, amount):
|
200
|
|
|
means = [];
|
201
|
|
|
mean_indexes = [];
|
202
|
|
|
for _ in range(amount):
|
203
|
|
|
random_index = numpy.random.randint(0, len(data));
|
204
|
|
|
while(random_index in mean_indexes):
|
205
|
|
|
mean_indexes.append(random_index);
|
206
|
|
|
random_index = numpy.random.randint(0, len(data));
|
207
|
|
|
|
208
|
|
|
means.append(numpy.array(data[random_index]));
|
209
|
|
|
|
210
|
|
|
return means;
|
211
|
|
|
|
212
|
|
|
|
213
|
|
|
|
214
|
|
|
# from pyclustering.samples.definitions import SIMPLE_SAMPLES, FCPS_SAMPLES;
|
215
|
|
|
# from pyclustering.utils import read_sample;
|
216
|
|
|
#
|
217
|
|
|
# # sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE9);
|
218
|
|
|
# # ema_instance = ema(sample, 2);
|
219
|
|
|
#
|
220
|
|
|
# sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE2);
|
221
|
|
|
# ema_instance = ema(sample, 3);
|
222
|
|
|
#
|
223
|
|
|
# ema_instance.process();
|
224
|
|
|
# clusters = ema_instance.get_clusters();
|
225
|
|
|
#
|
226
|
|
|
# print(clusters); |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.