1
|
|
|
"""!
|
2
|
|
|
|
3
|
|
|
@brief Neural Network: Pulse Coupled Neural Network
|
4
|
|
|
@details Based on book description:
|
5
|
|
|
- T.Lindblad, J.M.Kinser. Image Processing Using Pulse-Coupled Neural Networks (2nd edition). 2005.
|
6
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected])
|
8
|
|
|
@date 2014-2017
|
9
|
|
|
@copyright GNU Public License
|
10
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE
|
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify
|
13
|
|
|
it under the terms of the GNU General Public License as published by
|
14
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
15
|
|
|
(at your option) any later version.
|
16
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful,
|
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
20
|
|
|
GNU General Public License for more details.
|
21
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License
|
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
24
|
|
|
@endcond
|
25
|
|
|
|
26
|
|
|
"""
|
27
|
|
|
|
28
|
|
|
import matplotlib.pyplot as plt;
|
|
|
|
|
29
|
|
|
import matplotlib.animation as animation;
|
|
|
|
|
30
|
|
|
|
31
|
|
|
import random;
|
32
|
|
|
import numpy;
|
|
|
|
|
33
|
|
|
|
34
|
|
|
from PIL import Image;
|
|
|
|
|
35
|
|
|
|
36
|
|
|
from pyclustering.nnet import *;
|
|
|
|
|
37
|
|
|
import pyclustering.core.pcnn_wrapper as wrapper;
|
38
|
|
|
|
39
|
|
|
from pyclustering.utils import draw_dynamics;
|
40
|
|
|
|
41
|
|
|
|
42
|
|
|
class pcnn_parameters:
|
43
|
|
|
"""!
|
44
|
|
|
@brief Parameters for pulse coupled neural network.
|
45
|
|
|
|
46
|
|
|
"""
|
47
|
|
|
|
48
|
|
|
def __init__(self):
|
49
|
|
|
"""!
|
50
|
|
|
@brief Default constructor of parameters for pulse-coupled neural network.
|
51
|
|
|
@details Constructor initializes parameters by default non-zero values that can be
|
52
|
|
|
used for simple simulation.
|
53
|
|
|
"""
|
54
|
|
|
|
55
|
|
|
## Multiplier for the feeding compartment at the current step.
|
56
|
|
|
self.VF = 1.0;
|
57
|
|
|
|
58
|
|
|
## Multiplier for the linking compartment at the current step.
|
59
|
|
|
self.VL = 1.0;
|
60
|
|
|
|
61
|
|
|
## Multiplier for the threshold at the current step.
|
62
|
|
|
self.VT = 10.0;
|
63
|
|
|
|
64
|
|
|
|
65
|
|
|
## Multiplier for the feeding compartment at the previous step.
|
66
|
|
|
self.AF = 0.1;
|
67
|
|
|
|
68
|
|
|
## Multiplier for the linking compartment at the previous step.
|
69
|
|
|
self.AL = 0.1;
|
70
|
|
|
|
71
|
|
|
## Multiplier for the threshold at the previous step.
|
72
|
|
|
self.AT = 0.5;
|
73
|
|
|
|
74
|
|
|
|
75
|
|
|
## Synaptic weight - neighbours influence on linking compartment
|
76
|
|
|
self.W = 1.0;
|
77
|
|
|
|
78
|
|
|
## Synaptic weight - neighbours influence on feeding compartment.
|
79
|
|
|
self.M = 1.0;
|
80
|
|
|
|
81
|
|
|
|
82
|
|
|
## Linking strength in the network.
|
83
|
|
|
self.B = 0.1;
|
84
|
|
|
|
85
|
|
|
## Enable/disable Fast-Linking mode. Fast linking helps to overcome some of the effects of time quantisation. This process allows the linking wave to progress a lot faster than the feeding wave.
|
86
|
|
|
self.FAST_LINKING = False;
|
87
|
|
|
|
88
|
|
|
|
89
|
|
|
class pcnn_dynamic:
|
90
|
|
|
"""!
|
91
|
|
|
@brief Represents output dynamic of PCNN (pulse-coupled neural network).
|
92
|
|
|
|
93
|
|
|
"""
|
94
|
|
|
|
95
|
|
|
@property
|
96
|
|
|
def output(self):
|
97
|
|
|
"""!
|
98
|
|
|
@brief (list) Returns oscillato outputs during simulation.
|
99
|
|
|
|
100
|
|
|
"""
|
101
|
|
|
if (self.__ccore_pcnn_dynamic_pointer is not None):
|
102
|
|
|
return wrapper.pcnn_dynamic_get_output(self.__ccore_pcnn_dynamic_pointer);
|
103
|
|
|
|
104
|
|
|
return self.__dynamic;
|
105
|
|
|
|
106
|
|
|
|
107
|
|
|
@property
|
108
|
|
|
def time(self):
|
109
|
|
|
"""!
|
110
|
|
|
@brief (list) Returns sampling times when dynamic is measured during simulation.
|
111
|
|
|
|
112
|
|
|
"""
|
113
|
|
|
if (self.__ccore_pcnn_dynamic_pointer is not None):
|
114
|
|
|
return wrapper.pcnn_dynamic_get_time(self.__ccore_pcnn_dynamic_pointer);
|
115
|
|
|
|
116
|
|
|
return list(range(len(self)));
|
117
|
|
|
|
118
|
|
|
|
119
|
|
|
def __init__(self, dynamic, ccore = None):
|
120
|
|
|
"""!
|
121
|
|
|
@brief Constructor of PCNN dynamic.
|
122
|
|
|
|
123
|
|
|
@param[in] dynamic (list): Dynamic of oscillators on each step of simulation. If ccore pointer is specified than it can be ignored.
|
124
|
|
|
@param[in] ccore (ctypes.pointer): Pointer to CCORE pcnn_dynamic instance in memory.
|
125
|
|
|
|
126
|
|
|
"""
|
127
|
|
|
self.__OUTPUT_TRUE = 1; # fire value for oscillators.
|
128
|
|
|
self.__OUTPUT_FALSE = 0; # rest value for oscillators.
|
129
|
|
|
|
130
|
|
|
self.__dynamic = dynamic;
|
131
|
|
|
self.__ccore_pcnn_dynamic_pointer = ccore;
|
132
|
|
|
|
133
|
|
|
|
134
|
|
|
def __del__(self):
|
135
|
|
|
"""!
|
136
|
|
|
@brief Default destructor of PCNN dynamic.
|
137
|
|
|
|
138
|
|
|
"""
|
139
|
|
|
if (self.__ccore_pcnn_dynamic_pointer is not None):
|
140
|
|
|
wrapper.pcnn_dynamic_destroy(self.__ccore_pcnn_dynamic_pointer);
|
141
|
|
|
|
142
|
|
|
|
143
|
|
|
def __len__(self):
|
144
|
|
|
"""!
|
145
|
|
|
@brief (uint) Returns number of simulation steps that are stored in dynamic.
|
146
|
|
|
|
147
|
|
|
"""
|
148
|
|
|
if (self.__ccore_pcnn_dynamic_pointer is not None):
|
149
|
|
View Code Duplication |
return wrapper.pcnn_dynamic_get_size(self.__ccore_pcnn_dynamic_pointer);
|
|
|
|
|
150
|
|
|
|
151
|
|
|
return len(self.__dynamic);
|
152
|
|
|
|
153
|
|
|
|
154
|
|
|
def allocate_sync_ensembles(self):
|
155
|
|
|
"""!
|
156
|
|
|
@brief Allocate clusters in line with ensembles of synchronous oscillators where each
|
157
|
|
|
synchronous ensemble corresponds to only one cluster.
|
158
|
|
|
|
159
|
|
|
@return (list) Grours (lists) of indexes of synchronous oscillators.
|
160
|
|
|
For example, [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ].
|
161
|
|
|
|
162
|
|
|
"""
|
163
|
|
|
|
164
|
|
|
if (self.__ccore_pcnn_dynamic_pointer is not None):
|
165
|
|
|
return wrapper.pcnn_dynamic_allocate_sync_ensembles(self.__ccore_pcnn_dynamic_pointer);
|
166
|
|
|
|
167
|
|
|
sync_ensembles = [];
|
168
|
|
|
traverse_oscillators = set();
|
169
|
|
|
|
170
|
|
|
number_oscillators = len(self.__dynamic[0]);
|
171
|
|
|
|
172
|
|
|
for t in range(len(self.__dynamic) - 1, 0, -1):
|
173
|
|
|
sync_ensemble = [];
|
174
|
|
|
for i in range(number_oscillators):
|
175
|
|
|
if (self.__dynamic[t][i] == self.__OUTPUT_TRUE):
|
176
|
|
|
if (i not in traverse_oscillators):
|
177
|
|
|
sync_ensemble.append(i);
|
178
|
|
|
traverse_oscillators.add(i);
|
179
|
|
|
|
180
|
|
|
if (sync_ensemble != []):
|
181
|
|
View Code Duplication |
sync_ensembles.append(sync_ensemble);
|
|
|
|
|
182
|
|
|
|
183
|
|
|
return sync_ensembles;
|
184
|
|
|
|
185
|
|
|
|
186
|
|
|
def allocate_spike_ensembles(self):
|
187
|
|
|
"""!
|
188
|
|
|
@brief Analyses output dynamic of network and allocates spikes on each iteration as a list of indexes of oscillators.
|
189
|
|
|
@details Each allocated spike ensemble represents list of indexes of oscillators whose output is active.
|
190
|
|
|
|
191
|
|
|
@return (list) Spike ensembles of oscillators.
|
192
|
|
|
|
193
|
|
|
"""
|
194
|
|
|
|
195
|
|
|
if (self.__ccore_pcnn_dynamic_pointer is not None):
|
196
|
|
|
return wrapper.pcnn_dynamic_allocate_spike_ensembles(self.__ccore_pcnn_dynamic_pointer);
|
197
|
|
|
|
198
|
|
|
spike_ensembles = [];
|
199
|
|
|
number_oscillators = len(self.__dynamic[0]);
|
200
|
|
|
|
201
|
|
|
for t in range(len(self.__dynamic)):
|
202
|
|
|
spike_ensemble = [];
|
203
|
|
|
|
204
|
|
|
for index in range(number_oscillators):
|
205
|
|
|
if (self.__dynamic[t][index] == self.__OUTPUT_TRUE):
|
206
|
|
|
spike_ensemble.append(index);
|
207
|
|
|
|
208
|
|
|
if (len(spike_ensemble) > 0):
|
209
|
|
|
spike_ensembles.append(spike_ensemble);
|
210
|
|
|
|
211
|
|
|
return spike_ensembles;
|
212
|
|
|
|
213
|
|
|
|
214
|
|
|
def allocate_time_signal(self):
|
215
|
|
|
"""!
|
216
|
|
|
@brief Analyses output dynamic and calculates time signal (signal vector information) of network output.
|
217
|
|
|
|
218
|
|
|
@return (list) Time signal of network output.
|
219
|
|
|
|
220
|
|
|
"""
|
221
|
|
|
|
222
|
|
|
if (self.__ccore_pcnn_dynamic_pointer is not None):
|
223
|
|
|
return wrapper.pcnn_dynamic_allocate_time_signal(self.__ccore_pcnn_dynamic_pointer);
|
224
|
|
|
|
225
|
|
|
signal_vector_information = [];
|
226
|
|
|
for t in range(0, len(self.__dynamic)):
|
227
|
|
|
signal_vector_information.append(sum(self.__dynamic[t]));
|
228
|
|
|
|
229
|
|
|
return signal_vector_information;
|
230
|
|
|
|
231
|
|
|
|
232
|
|
|
class pcnn_visualizer:
|
233
|
|
|
"""!
|
234
|
|
|
@brief Visualizer of output dynamic of pulse-coupled neural network (PCNN).
|
235
|
|
|
|
236
|
|
|
"""
|
237
|
|
|
|
238
|
|
|
@staticmethod
|
239
|
|
|
def show_time_signal(pcnn_output_dynamic):
|
240
|
|
|
"""!
|
241
|
|
|
@brief Shows time signal (signal vector information) using network dynamic during simulation.
|
242
|
|
|
|
243
|
|
|
@param[in] pcnn_output_dynamic (pcnn_dynamic): Output dynamic of the pulse-coupled neural network.
|
244
|
|
|
|
245
|
|
|
"""
|
246
|
|
|
|
247
|
|
|
time_signal = pcnn_output_dynamic.allocate_time_signal();
|
248
|
|
|
time_axis = range(len(time_signal));
|
249
|
|
|
|
250
|
|
|
plt.subplot(1, 1, 1);
|
251
|
|
|
plt.plot(time_axis, time_signal, '-');
|
252
|
|
|
plt.ylabel("G (time signal)");
|
253
|
|
|
plt.xlabel("t (iteration)");
|
254
|
|
|
plt.grid(True);
|
255
|
|
|
|
256
|
|
|
plt.show();
|
257
|
|
|
|
258
|
|
|
@staticmethod
|
259
|
|
|
def show_output_dynamic(pcnn_output_dynamic, separate_representation = False):
|
260
|
|
|
"""!
|
261
|
|
|
@brief Shows output dynamic (output of each oscillator) during simulation.
|
262
|
|
|
|
263
|
|
|
@param[in] pcnn_output_dynamic (pcnn_dynamic): Output dynamic of the pulse-coupled neural network.
|
264
|
|
|
@param[in] separate_representation (list): Consists of lists of oscillators where each such list consists of oscillator indexes that will be shown on separated stage.
|
265
|
|
|
|
266
|
|
|
"""
|
267
|
|
|
|
268
|
|
|
draw_dynamics(pcnn_output_dynamic.time, pcnn_output_dynamic.output, x_title = "t", y_title = "y(t)", separate = separate_representation);
|
269
|
|
|
|
270
|
|
|
@staticmethod
|
271
|
|
|
def animate_spike_ensembles(pcnn_output_dynamic, image_size):
|
272
|
|
|
"""!
|
273
|
|
|
@brief Shows animation of output dynamic (output of each oscillator) during simulation.
|
274
|
|
|
|
275
|
|
|
@param[in] pcnn_output_dynamic (pcnn_dynamic): Output dynamic of the pulse-coupled neural network.
|
276
|
|
|
@param[in] image_size (list): Image size represented as [height, width].
|
277
|
|
|
|
278
|
|
|
"""
|
279
|
|
|
|
280
|
|
|
figure = plt.figure();
|
281
|
|
|
|
282
|
|
|
time_signal = pcnn_output_dynamic.allocate_time_signal();
|
283
|
|
|
spike_ensembles = pcnn_output_dynamic.allocate_spike_ensembles();
|
284
|
|
|
|
285
|
|
|
spike_animation = [];
|
286
|
|
|
ensemble_index = 0;
|
287
|
|
|
for t in range(len(time_signal)):
|
288
|
|
|
image_color_segments = [(255, 255, 255)] * (image_size[0] * image_size[1]);
|
289
|
|
|
|
290
|
|
|
if (time_signal[t] > 0):
|
291
|
|
|
for index_pixel in spike_ensembles[ensemble_index]:
|
292
|
|
|
image_color_segments[index_pixel] = (0, 0, 0);
|
293
|
|
|
|
294
|
|
|
ensemble_index += 1;
|
295
|
|
|
|
296
|
|
|
stage = numpy.array(image_color_segments, numpy.uint8);
|
297
|
|
|
stage = numpy.reshape(stage, image_size + ((3),)); # ((3),) it's size of RGB - third dimension.
|
298
|
|
|
image_cluster = Image.fromarray(stage, 'RGB');
|
299
|
|
|
|
300
|
|
|
spike_animation.append( [ plt.imshow(image_cluster, interpolation = 'none') ] );
|
301
|
|
|
|
302
|
|
|
|
303
|
|
|
im_ani = animation.ArtistAnimation(figure, spike_animation, interval = 75, repeat_delay = 3000, blit = True)
|
|
|
|
|
304
|
|
|
plt.show();
|
305
|
|
|
|
306
|
|
|
|
307
|
|
|
class pcnn_network(network):
|
308
|
|
|
"""!
|
309
|
|
|
@brief Model of oscillatory network that is based on the Eckhorn model.
|
310
|
|
|
|
311
|
|
|
Example:
|
312
|
|
|
@code
|
313
|
|
|
# Create pulse-coupled neural network:
|
314
|
|
|
# - 9 oscillators.
|
315
|
|
|
# - default parameters.
|
316
|
|
|
# - grid type of connections (each oscillator has connection with four neighbors).
|
317
|
|
|
net = pcnn_network(9, None, conn_type.GRID_FOUR, ccore = ccore_flag);
|
318
|
|
|
|
319
|
|
|
# Create external stimulus. Number of stimulus should be equal to number of neurons.
|
320
|
|
|
stimulus = [1, 1, 1, 0, 0, 0, 1, 1, 1];
|
321
|
|
|
|
322
|
|
|
# Simulate dynamic of the network during 40 iterations
|
323
|
|
|
dynamic = net.simulate(40, stimulus);
|
324
|
|
|
|
325
|
|
|
# Allocate synchronous oscillators
|
326
|
|
|
ensembles = dynamic.allocate_sync_ensembles();
|
327
|
|
|
print(ensembles);
|
328
|
|
|
|
329
|
|
|
# Show output dynamic of the network
|
330
|
|
|
pcnn_visualizer.show_output_dynamic(dynamic);
|
331
|
|
|
|
332
|
|
|
# Show time signal vector information
|
333
|
|
|
pcnn_visualizer.show_time_signal(dynamic);
|
334
|
|
|
@endcode
|
335
|
|
|
|
336
|
|
|
"""
|
337
|
|
|
|
338
|
|
|
__OUTPUT_TRUE = 1; # fire value for oscillators.
|
339
|
|
|
__OUTPUT_FALSE = 0; # rest value for oscillators.
|
340
|
|
|
|
341
|
|
|
def __init__(self, num_osc, parameters = None, type_conn = conn_type.ALL_TO_ALL, type_conn_represent = conn_represent.MATRIX, height = None, width = None, ccore = False):
|
342
|
|
|
"""!
|
343
|
|
|
@brief Constructor of oscillatory network is based on Kuramoto model.
|
344
|
|
|
|
345
|
|
|
@param[in] num_osc (uint): Number of oscillators in the network.
|
346
|
|
|
@param[in] parameters (pcnn_parameters): Parameters of the network.
|
347
|
|
|
@param[in] type_conn (conn_type): Type of connection between oscillators in the network (all-to-all, grid, bidirectional list, etc.).
|
348
|
|
|
@param[in] type_conn_represent (conn_represent): Internal representation of connection in the network: matrix or list.
|
349
|
|
|
@param[in] height (uint): Number of oscillators in column of the network, this argument is used
|
350
|
|
|
only for network with grid structure (GRID_FOUR, GRID_EIGHT), for other types this argument is ignored.
|
351
|
|
|
@param[in] width (uint): Number of oscillotors in row of the network, this argument is used only
|
352
|
|
|
for network with grid structure (GRID_FOUR, GRID_EIGHT), for other types this argument is ignored.
|
353
|
|
|
@param[in] ccore (bool): If True then all interaction with object will be performed via CCORE library (C++ implementation of pyclustering).
|
354
|
|
|
|
355
|
|
|
"""
|
356
|
|
|
|
357
|
|
|
self._outputs = None; # list of outputs of oscillors.
|
358
|
|
|
|
359
|
|
|
self._feeding = None; # feeding compartment of each oscillator.
|
360
|
|
|
self._linking = None; # linking compartment of each oscillator.
|
361
|
|
|
self._threshold = None; # threshold of each oscillator.
|
362
|
|
|
|
363
|
|
|
self._params = None;
|
364
|
|
|
|
365
|
|
|
self.__ccore_pcnn_pointer = None;
|
366
|
|
|
|
367
|
|
|
# set parameters of the network
|
368
|
|
|
if (parameters is not None):
|
369
|
|
|
self._params = parameters;
|
370
|
|
|
else:
|
371
|
|
|
self._params = pcnn_parameters();
|
372
|
|
|
|
373
|
|
|
if (ccore is True):
|
374
|
|
|
network_height = height;
|
375
|
|
|
network_width = width;
|
376
|
|
|
|
377
|
|
|
if ( (type_conn == conn_type.GRID_FOUR) or (type_conn == conn_type.GRID_EIGHT) ):
|
378
|
|
|
if ( (network_height is None) or (network_width is None) ):
|
379
|
|
|
side_size = num_osc ** (0.5);
|
380
|
|
|
if (side_size - math.floor(side_size) > 0):
|
381
|
|
|
raise NameError('Invalid number of oscillators in the network in case of grid structure');
|
382
|
|
|
|
383
|
|
|
network_height = int(side_size);
|
384
|
|
|
network_width = int(side_size);
|
385
|
|
|
else:
|
386
|
|
|
network_height = 0;
|
387
|
|
|
network_width = 0;
|
388
|
|
|
|
389
|
|
|
self.__ccore_pcnn_pointer = wrapper.pcnn_create(num_osc, type_conn, network_height, network_width, self._params);
|
390
|
|
|
else:
|
391
|
|
|
super().__init__(num_osc, type_conn, type_conn_represent, height, width);
|
392
|
|
|
|
393
|
|
|
self._outputs = [0.0] * self._num_osc;
|
394
|
|
|
|
395
|
|
|
self._feeding = [0.0] * self._num_osc;
|
396
|
|
|
self._linking = [0.0] * self._num_osc;
|
397
|
|
|
self._threshold = [ random.random() for i in range(self._num_osc) ];
|
398
|
|
|
|
399
|
|
|
|
400
|
|
|
def __del__(self):
|
401
|
|
|
"""!
|
402
|
|
|
@brief Default destructor of PCNN.
|
403
|
|
|
|
404
|
|
|
"""
|
405
|
|
|
if (self.__ccore_pcnn_pointer is not None):
|
406
|
|
|
wrapper.pcnn_destroy(self.__ccore_pcnn_pointer);
|
407
|
|
|
self.__ccore_pcnn_pointer = None;
|
408
|
|
|
|
409
|
|
|
|
410
|
|
|
def __len__(self):
|
411
|
|
|
"""!
|
412
|
|
|
@brief (uint) Returns size of oscillatory network.
|
413
|
|
|
|
414
|
|
|
"""
|
415
|
|
|
|
416
|
|
|
if (self.__ccore_pcnn_pointer is not None):
|
417
|
|
|
return wrapper.pcnn_get_size(self.__ccore_pcnn_pointer);
|
418
|
|
|
|
419
|
|
|
return self._num_osc;
|
420
|
|
|
|
421
|
|
|
|
422
|
|
|
def simulate(self, steps, stimulus):
|
423
|
|
|
"""!
|
424
|
|
|
@brief Performs static simulation of pulse coupled neural network using.
|
425
|
|
|
|
426
|
|
|
@param[in] steps (uint): Number steps of simulations during simulation.
|
427
|
|
|
@param[in] stimulus (list): Stimulus for oscillators, number of stimulus should be equal to number of oscillators.
|
428
|
|
|
|
429
|
|
|
@return (pcnn_dynamic) Dynamic of oscillatory network - output of each oscillator on each step of simulation.
|
430
|
|
|
|
431
|
|
|
"""
|
432
|
|
|
|
433
|
|
|
if (len(stimulus) != len(self)):
|
434
|
|
|
raise NameError('Number of stimulus should be equal to number of oscillators. Each stimulus corresponds to only one oscillators.');
|
435
|
|
|
|
436
|
|
|
if (self.__ccore_pcnn_pointer is not None):
|
437
|
|
|
ccore_instance_dynamic = wrapper.pcnn_simulate(self.__ccore_pcnn_pointer, steps, stimulus);
|
438
|
|
|
return pcnn_dynamic(None, ccore_instance_dynamic);
|
439
|
|
|
|
440
|
|
|
dynamic = [];
|
441
|
|
|
dynamic.append(self._outputs);
|
442
|
|
|
|
443
|
|
|
for step in range(1, steps, 1):
|
|
|
|
|
444
|
|
|
self._outputs = self._calculate_states(stimulus);
|
445
|
|
|
|
446
|
|
|
dynamic.append(self._outputs);
|
447
|
|
|
|
448
|
|
|
return pcnn_dynamic(dynamic);
|
449
|
|
|
|
450
|
|
|
|
451
|
|
|
def _calculate_states(self, stimulus):
|
452
|
|
|
"""!
|
453
|
|
|
@brief Calculates states of oscillators in the network for current step and stored them except outputs of oscillators.
|
454
|
|
|
|
455
|
|
|
@param[in] stimulus (list): Stimulus for oscillators, number of stimulus should be equal to number of oscillators.
|
456
|
|
|
|
457
|
|
|
@return (list) New outputs for oscillators (do not stored it).
|
458
|
|
|
|
459
|
|
|
"""
|
460
|
|
|
|
461
|
|
|
feeding = [0.0] * self._num_osc;
|
462
|
|
|
linking = [0.0] * self._num_osc;
|
463
|
|
|
outputs = [0.0] * self._num_osc;
|
464
|
|
|
threshold = [0.0] * self._num_osc;
|
465
|
|
|
|
466
|
|
|
# Used by Fast-Linking
|
467
|
|
|
output_change = False;
|
468
|
|
|
|
469
|
|
|
for index in range(0, self._num_osc, 1):
|
470
|
|
|
neighbors = self.get_neighbors(index);
|
471
|
|
|
|
472
|
|
|
feeding_influence = 0.0;
|
473
|
|
|
linking_influence = 0.0;
|
474
|
|
|
|
475
|
|
|
for index_neighbour in neighbors:
|
476
|
|
|
feeding_influence += self._outputs[index_neighbour] * self._params.M;
|
477
|
|
|
linking_influence += self._outputs[index_neighbour] * self._params.W;
|
478
|
|
|
|
479
|
|
|
feeding_influence *= self._params.VF;
|
480
|
|
|
linking_influence *= self._params.VL;
|
481
|
|
|
|
482
|
|
|
feeding[index] = self._params.AF * self._feeding[index] + stimulus[index] + feeding_influence;
|
483
|
|
|
linking[index] = self._params.AL * self._linking[index] + linking_influence;
|
484
|
|
|
|
485
|
|
|
# calculate internal activity
|
486
|
|
|
internal_activity = feeding[index] * (1.0 + self._params.B * linking[index]);
|
487
|
|
|
|
488
|
|
|
# calculate output of the oscillator
|
489
|
|
|
if (internal_activity > self._threshold[index]):
|
490
|
|
|
outputs[index] = self.__OUTPUT_TRUE;
|
491
|
|
|
else:
|
492
|
|
|
outputs[index] = self.__OUTPUT_FALSE;
|
493
|
|
|
|
494
|
|
|
# In case of Fast Linking we should calculate threshould until output is changed.
|
495
|
|
|
if (self._params.FAST_LINKING is not True):
|
496
|
|
|
threshold[index] = self._params.AT * self._threshold[index] + self._params.VT * outputs[index];
|
497
|
|
|
|
498
|
|
|
|
499
|
|
|
# In case of Fast Linking we need to wait until output is changed.
|
500
|
|
|
if (self._params.FAST_LINKING is True):
|
501
|
|
|
current_output_change = False;
|
502
|
|
|
previous_outputs = outputs[:];
|
503
|
|
|
|
504
|
|
|
while (output_change is True):
|
505
|
|
|
for index in range(0, self._num_osc, 1):
|
506
|
|
|
linking_influence = 0.0;
|
507
|
|
|
|
508
|
|
|
for index_neighbour in neighbors:
|
509
|
|
|
linking_influence += previous_outputs[index_neighbour] * self._params.W;
|
510
|
|
|
|
511
|
|
|
linking_influence *= self._params.VL;
|
512
|
|
|
linking[index] = linking_influence;
|
513
|
|
|
|
514
|
|
|
internal_activity = feeding[index] * (1.0 + self._params.B * linking[index]);
|
515
|
|
|
|
516
|
|
|
# calculate output of the oscillator
|
517
|
|
|
if (internal_activity > self._threshold[index]):
|
518
|
|
|
outputs[index] = self.__OUTPUT_TRUE;
|
519
|
|
|
else:
|
520
|
|
|
outputs[index] = self.__OUTPUT_FALSE;
|
521
|
|
|
|
522
|
|
|
if (outputs[index] != previous_outputs[index]):
|
523
|
|
|
current_output_change = True;
|
524
|
|
|
|
525
|
|
|
output_change = current_output_change;
|
526
|
|
|
current_output_change = False;
|
527
|
|
|
|
528
|
|
|
if (output_change is True):
|
529
|
|
|
previous_outputs = outputs[:];
|
530
|
|
|
|
531
|
|
|
# In case of Fast Linking threshould should be calculated after fast linking.
|
532
|
|
|
if (self._params.FAST_LINKING is True):
|
533
|
|
|
for index in range(0, self._num_osc, 1):
|
534
|
|
|
threshold[index] = self._params.AT * self._threshold[index] + self._params.VT * outputs[index];
|
535
|
|
|
|
536
|
|
|
self._feeding = feeding[:];
|
537
|
|
|
self._linking = linking[:];
|
538
|
|
|
self._threshold = threshold[:];
|
539
|
|
|
|
540
|
|
|
return outputs
|
541
|
|
|
|
542
|
|
|
|
543
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.