| Total Complexity | 42 |
| Total Lines | 345 |
| Duplicated Lines | 13.33 % |
| Changes | 1 | ||
| Bugs | 0 | Features | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like GeneticAlgorithm often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """! |
||
| 28 | class GeneticAlgorithm: |
||
| 29 | """! |
||
| 30 | @brief Class represents Genetic clustering algorithm |
||
| 31 | |||
| 32 | """ |
||
| 33 | |||
| 34 | def __init__(self, data, count_clusters, chromosome_count, population_count, count_mutation_gens=2): |
||
| 35 | |||
| 36 | # Initialize random |
||
| 37 | np.random.seed() |
||
| 38 | |||
| 39 | # Clustering data |
||
| 40 | self.data = data |
||
| 41 | |||
| 42 | # Count clusters |
||
| 43 | self.count_clusters = count_clusters |
||
| 44 | |||
| 45 | # Home many chromosome in population |
||
| 46 | self.chromosome_count = chromosome_count |
||
| 47 | |||
| 48 | # How many populations |
||
| 49 | self.population_count = population_count |
||
| 50 | |||
| 51 | # Count mutation genes |
||
| 52 | self.count_mutation_gens = count_mutation_gens |
||
| 53 | |||
| 54 | def clustering(self): |
||
| 55 | """ |
||
| 56 | |||
| 57 | :return: |
||
| 58 | """ |
||
| 59 | |||
| 60 | # Initialize population |
||
| 61 | chromosomes = self.init_population(self.count_clusters, len(self.data), self.chromosome_count) |
||
| 62 | |||
| 63 | # Initialize the Best solution |
||
| 64 | best_chromosome, best_ff = self.get_best_chromosome(chromosomes, self.data, self.count_clusters) |
||
| 65 | |||
| 66 | # Next population |
||
| 67 | for _ in range(self.population_count): |
||
| 68 | pass |
||
| 69 | |||
| 70 | # Select |
||
| 71 | chromosomes = self.select(chromosomes, self.data, self.count_clusters) |
||
| 72 | |||
| 73 | # Crossover |
||
| 74 | self.crossover(chromosomes) |
||
| 75 | |||
| 76 | # Mutation |
||
| 77 | self.mutation(chromosomes, self.count_clusters, self.count_mutation_gens) |
||
| 78 | |||
| 79 | # Update the Best Solution |
||
| 80 | new_best_chromosome, new_best_ff = self.get_best_chromosome(chromosomes, self.data, self.count_clusters) |
||
| 81 | |||
| 82 | print('new best_chromosome : ', new_best_chromosome) |
||
| 83 | print('new best_ff : ', new_best_ff) |
||
| 84 | |||
| 85 | if new_best_ff < best_ff: |
||
| 86 | best_ff = new_best_ff |
||
| 87 | best_chromosome = new_best_chromosome |
||
| 88 | |||
| 89 | |||
| 90 | print('best_chromosome : ', best_chromosome) |
||
| 91 | print('best_ff : ', best_ff) |
||
| 92 | |||
| 93 | @staticmethod |
||
| 94 | def mutation(chromosomes, count_clusters, count_gen_for_mutation): |
||
| 95 | """ """ |
||
| 96 | |||
| 97 | # Count gens in Chromosome |
||
| 98 | count_gens = len(chromosomes[0]) |
||
| 99 | |||
| 100 | # |
||
| 101 | for _idx_chromosome in range(len(chromosomes)): |
||
| 102 | |||
| 103 | # |
||
| 104 | for _ in range(count_gen_for_mutation): |
||
| 105 | |||
| 106 | # Get random gen |
||
| 107 | gen_num = np.random.randint(count_gens) |
||
| 108 | |||
| 109 | # Set random cluster |
||
| 110 | chromosomes[_idx_chromosome][gen_num] = np.random.randint(count_clusters) |
||
| 111 | |||
| 112 | @staticmethod |
||
| 113 | def crossover(chromosomes): |
||
| 114 | """ """ |
||
| 115 | |||
| 116 | # Get pairs to Crossover |
||
| 117 | pairs_to_crossover = np.array(range(len(chromosomes))) |
||
| 118 | |||
| 119 | # Set random pairs |
||
| 120 | np.random.shuffle(pairs_to_crossover) |
||
| 121 | |||
| 122 | # Index offset ( pairs_to_crossover split into 2 parts : [V1, V2, .. | P1, P2, ...] crossover between V<->P) |
||
| 123 | offset_in_pair = int(len(pairs_to_crossover) / 2) |
||
| 124 | |||
| 125 | # For each pair |
||
| 126 | for _idx in range(offset_in_pair): |
||
| 127 | |||
| 128 | # Generate random mask for crossover |
||
| 129 | crossover_mask = GeneticAlgorithm.get_crossover_mask(len(chromosomes[_idx])) |
||
| 130 | |||
| 131 | # Crossover a pair |
||
| 132 | GeneticAlgorithm.crossover_a_pair(chromosomes[pairs_to_crossover[_idx]], |
||
| 133 | chromosomes[pairs_to_crossover[_idx + offset_in_pair]], |
||
| 134 | crossover_mask) |
||
| 135 | |||
| 136 | @staticmethod |
||
| 137 | def crossover_a_pair(chromosome_1, chromosome_2, mask): |
||
| 138 | """ """ |
||
| 139 | |||
| 140 | for _idx in range(len(chromosome_1)): |
||
| 141 | |||
| 142 | if mask[_idx] == 1: |
||
| 143 | # Swap values |
||
| 144 | chromosome_1[_idx], chromosome_2[_idx] = chromosome_2[_idx], chromosome_1[_idx] |
||
| 145 | |||
| 146 | @staticmethod |
||
| 147 | def get_crossover_mask(mask_length): |
||
| 148 | """ """ |
||
| 149 | |||
| 150 | # Initialize mask |
||
| 151 | mask = np.zeros(mask_length) |
||
| 152 | |||
| 153 | # Set a half of array to 1 |
||
| 154 | mask[:int(int(mask_length) / 2)] = 1 |
||
| 155 | |||
| 156 | # Random shuffle |
||
| 157 | np.random.shuffle(mask) |
||
| 158 | |||
| 159 | return mask |
||
| 160 | |||
| 161 | @staticmethod |
||
| 162 | def select(chromosomes, data, count_clusters): |
||
| 163 | """ """ |
||
| 164 | |||
| 165 | # Calc centers |
||
| 166 | centres = GeneticAlgorithm.get_centres(chromosomes, data, count_clusters) |
||
| 167 | |||
| 168 | # Calc fitness functions |
||
| 169 | fitness = GeneticAlgorithm.calc_fitness_function(centres, data) |
||
| 170 | |||
| 171 | # Calc probability vector |
||
| 172 | probabilities = GeneticAlgorithm.calc_probability_vector(fitness) |
||
| 173 | |||
| 174 | # Select P chromosomes with probabilities |
||
| 175 | new_chromosomes = np.zeros(chromosomes.shape) |
||
| 176 | |||
| 177 | # Selecting |
||
| 178 | for _idx in range(len(chromosomes)): |
||
| 179 | new_chromosomes[_idx] = chromosomes[GeneticAlgorithm.get_uniform(probabilities)] |
||
| 180 | |||
| 181 | return new_chromosomes |
||
| 182 | |||
| 183 | @staticmethod |
||
| 184 | def set_last_value_to_one(probabilities): |
||
| 185 | """! |
||
| 186 | @brief Update the last same probabilities to one. |
||
| 187 | @details All values of probability list equals to the last element are set to 1. |
||
| 188 | """ |
||
| 189 | |||
| 190 | # Start from the last elem |
||
| 191 | back_idx = - 1 |
||
| 192 | |||
| 193 | # All values equal to the last elem should be set to 1 |
||
| 194 | last_val = probabilities[back_idx] |
||
| 195 | |||
| 196 | # for all elements or if a elem not equal to the last elem |
||
| 197 | for _idx in range(-1, -len(probabilities) - 1): |
||
| 198 | if probabilities[back_idx] == last_val: |
||
| 199 | probabilities[back_idx] = 1 |
||
| 200 | else: |
||
| 201 | break |
||
| 202 | |||
| 203 | @staticmethod |
||
| 204 | def get_uniform(probabilities): |
||
| 205 | """! |
||
| 206 | @brief Returns index in probabilities. |
||
| 207 | |||
| 208 | @param[in] probabilities (list): List with segments in increasing sequence with val in [0, 1], |
||
| 209 | for example, [0 0.1 0.2 0.3 1.0]. |
||
| 210 | """ |
||
| 211 | |||
| 212 | # Initialize return value |
||
| 213 | res_idx = None |
||
| 214 | |||
| 215 | # Get random num in range [0, 1) |
||
| 216 | random_num = np.random.rand() |
||
| 217 | |||
| 218 | # Find segment with val1 < random_num < val2 |
||
| 219 | for _idx in range(len(probabilities)): |
||
| 220 | if random_num < probabilities[_idx]: |
||
| 221 | res_idx = _idx |
||
| 222 | break |
||
| 223 | |||
| 224 | if res_idx is None: |
||
| 225 | raise AttributeError("'probabilities' should contain 1 as the end of last segment(s)") |
||
| 226 | |||
| 227 | return res_idx |
||
| 228 | |||
| 229 | @staticmethod |
||
| 230 | def get_chromosome_by_probability(probabilities): |
||
| 231 | """ """ |
||
| 232 | |||
| 233 | # Initialize return value |
||
| 234 | res_idx = None |
||
| 235 | |||
| 236 | # Get uniform random in [0, 1) |
||
| 237 | random_num = np.random.rand() |
||
| 238 | |||
| 239 | # Find element with val1 < random_num < val2 |
||
| 240 | for _idx in range(len(probabilities)): |
||
| 241 | if random_num < probabilities[_idx]: |
||
| 242 | res_idx = _idx |
||
| 243 | break |
||
| 244 | |||
| 245 | if res_idx is None: |
||
| 246 | raise AttributeError("List 'probabilities' should contain 1 as the end of last segment(s)") |
||
| 247 | |||
| 248 | return res_idx |
||
| 249 | |||
| 250 | View Code Duplication | @staticmethod |
|
|
1 ignored issue
–
show
|
|||
| 251 | def calc_probability_vector(fitness): |
||
| 252 | """ """ |
||
| 253 | |||
| 254 | if len(fitness) == 0: |
||
| 255 | raise AttributeError("Has no any fitness functions.") |
||
| 256 | |||
| 257 | # Initialize vector |
||
| 258 | prob = np.zeros(len(fitness)) |
||
| 259 | |||
| 260 | # Get min element |
||
| 261 | min_elem = np.min(fitness) |
||
| 262 | |||
| 263 | # Initialize first element |
||
| 264 | prob[0] = fitness[0] - min_elem |
||
| 265 | |||
| 266 | # Accumulate values in probability vector |
||
| 267 | for _idx in range(1, len(fitness)): |
||
| 268 | prob[_idx] = prob[_idx - 1] + fitness[_idx] - min_elem |
||
| 269 | |||
| 270 | # Normalize |
||
| 271 | prob /= np.sum(fitness - min_elem) |
||
| 272 | |||
| 273 | return prob |
||
| 274 | |||
| 275 | @staticmethod |
||
| 276 | def init_population(count_clusters, count_data, chromosome_count): |
||
| 277 | """ Returns first population as a uniform random choice """ |
||
| 278 | |||
| 279 | population = np.random.randint(count_clusters, size=(chromosome_count, count_data)) |
||
| 280 | |||
| 281 | return population |
||
| 282 | |||
| 283 | @staticmethod |
||
| 284 | def get_best_chromosome(chromosomes, data, count_clusters): |
||
| 285 | """ """ |
||
| 286 | |||
| 287 | # Calc centers |
||
| 288 | centres = GeneticAlgorithm.get_centres(chromosomes, data, count_clusters) |
||
| 289 | |||
| 290 | # Calc Fitness functions |
||
| 291 | fitness_function = GeneticAlgorithm.calc_fitness_function(centres, data) |
||
| 292 | |||
| 293 | # Index of the best chromosome |
||
| 294 | best_chromosome_idx = fitness_function.argmin() |
||
| 295 | |||
| 296 | # Get chromosome with the best fitness function |
||
| 297 | return chromosomes[best_chromosome_idx], fitness_function[best_chromosome_idx] |
||
| 298 | |||
| 299 | View Code Duplication | @staticmethod |
|
|
1 ignored issue
–
show
|
|||
| 300 | def calc_fitness_function(centres, data): |
||
| 301 | """ """ |
||
| 302 | |||
| 303 | # Get count of chromosomes and clusters |
||
| 304 | count_chromosome = len(centres) |
||
| 305 | count_clusters = len(centres[0]) |
||
| 306 | |||
| 307 | # Initialize fitness function values |
||
| 308 | fitness_function = np.zeros(count_chromosome) |
||
| 309 | |||
| 310 | # Calc fitness function for each chromosome |
||
| 311 | for _idx_chromosome in range(count_chromosome): |
||
| 312 | |||
| 313 | # Calc for each cluster in a chromosome |
||
| 314 | for _idx_center in range(count_clusters): |
||
| 315 | fitness_function[_idx_chromosome] += np.linalg.norm(data - centres[_idx_chromosome][_idx_center]) |
||
| 316 | |||
| 317 | # Normalize fitness function |
||
| 318 | fitness_function[_idx_chromosome] /= count_clusters |
||
| 319 | |||
| 320 | return fitness_function |
||
| 321 | |||
| 322 | @staticmethod |
||
| 323 | def get_centres(chromosomes, data, count_clusters): |
||
| 324 | """ """ |
||
| 325 | |||
| 326 | # Initialize centres |
||
| 327 | centres = np.zeros((len(chromosomes), count_clusters, len(data[0]))) |
||
| 328 | |||
| 329 | # Calc centers for next chromosome |
||
| 330 | for _idx in range(len(chromosomes)): |
||
| 331 | centres[_idx] = GeneticAlgorithm.calc_centers_for_chromosome(chromosomes[_idx], data, count_clusters) |
||
| 332 | |||
| 333 | return centres |
||
| 334 | |||
| 335 | @staticmethod |
||
| 336 | def calc_centers_for_chromosome(chromosome, data, count_clusters): |
||
| 337 | """ """ |
||
| 338 | |||
| 339 | # Initialize centers |
||
| 340 | centers = np.zeros((count_clusters, len(data[0]))) |
||
| 341 | |||
| 342 | # Next cluster |
||
| 343 | for _idx_cluster in range(count_clusters): |
||
| 344 | centers[_idx_cluster] = GeneticAlgorithm.calc_the_center(chromosome, data, _idx_cluster) |
||
| 345 | |||
| 346 | return centers |
||
| 347 | |||
| 348 | @staticmethod |
||
| 349 | def calc_the_center(chromosome, data, cluster_num): |
||
| 350 | """ """ |
||
| 351 | |||
| 352 | # Initialize center |
||
| 353 | center = np.zeros(len(data[0])) |
||
| 354 | |||
| 355 | # Get count data in clusters |
||
| 356 | count_data_in_cluster = np.sum(chromosome) |
||
| 357 | |||
| 358 | # If has no data in cluster |
||
| 359 | if count_data_in_cluster == 0: |
||
| 360 | return center |
||
| 361 | |||
| 362 | # Next data point |
||
| 363 | for _idx in range(len(chromosome)): |
||
| 364 | |||
| 365 | # If data associated with current cluster |
||
| 366 | if chromosome[_idx] == cluster_num: |
||
| 367 | center += data[_idx] |
||
| 368 | |||
| 369 | # Normalize center |
||
| 370 | center /= count_data_in_cluster |
||
| 371 | |||
| 372 | return center |
||
| 373 | |||
| 433 |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.