|
1
|
|
|
"""! |
|
2
|
|
|
|
|
3
|
|
|
@brief Phase oscillatory network for patten recognition based on modified Kuramoto model. |
|
4
|
|
|
@details Based on article description: |
|
5
|
|
|
- R.Follmann, E.E.N.Macau, E.Rosa, Jr., J.R.C.Piqueira. Phase Oscillatory Network and Visual Pattern Recognition. 2014. |
|
6
|
|
|
|
|
7
|
|
|
@authors Andrei Novikov ([email protected]) |
|
8
|
|
|
@date 2014-2018 |
|
9
|
|
|
@copyright GNU Public License |
|
10
|
|
|
|
|
11
|
|
|
@cond GNU_PUBLIC_LICENSE |
|
12
|
|
|
PyClustering is free software: you can redistribute it and/or modify |
|
13
|
|
|
it under the terms of the GNU General Public License as published by |
|
14
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
15
|
|
|
(at your option) any later version. |
|
16
|
|
|
|
|
17
|
|
|
PyClustering is distributed in the hope that it will be useful, |
|
18
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
19
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
20
|
|
|
GNU General Public License for more details. |
|
21
|
|
|
|
|
22
|
|
|
You should have received a copy of the GNU General Public License |
|
23
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
24
|
|
|
@endcond |
|
25
|
|
|
|
|
26
|
|
|
""" |
|
27
|
|
|
|
|
28
|
|
|
from pyclustering.nnet import solve_type, initial_type, conn_type,conn_represent; |
|
29
|
|
|
from pyclustering.nnet.sync import sync_network, sync_dynamic, sync_visualizer; |
|
30
|
|
|
|
|
31
|
|
|
import pyclustering.core.syncpr_wrapper as wrapper; |
|
32
|
|
|
|
|
33
|
|
|
from pyclustering.core.wrapper import ccore_library; |
|
34
|
|
|
|
|
35
|
|
|
from PIL import Image; |
|
|
|
|
|
|
36
|
|
|
|
|
37
|
|
|
import matplotlib.pyplot as plt; |
|
|
|
|
|
|
38
|
|
|
import matplotlib.animation as animation; |
|
|
|
|
|
|
39
|
|
|
|
|
40
|
|
|
import math; |
|
41
|
|
|
import cmath; |
|
42
|
|
|
import numpy; |
|
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
|
|
45
|
|
|
class syncpr_dynamic(sync_dynamic): |
|
46
|
|
|
"""! |
|
47
|
|
|
@brief Represents output dynamic of syncpr (Sync for Pattern Recognition). |
|
48
|
|
|
|
|
49
|
|
|
""" |
|
50
|
|
|
|
|
51
|
|
|
def __init__(self, phase, time, ccore): |
|
52
|
|
|
"""! |
|
53
|
|
|
@brief Constructor of syncpr dynamic. |
|
54
|
|
|
|
|
55
|
|
|
@param[in] phase (list): Dynamic of oscillators on each step of simulation. If ccore pointer is specified than it can be ignored. |
|
56
|
|
|
@param[in] time (list): Simulation time. |
|
57
|
|
|
@param[in] ccore (ctypes.pointer): Pointer to CCORE sync_dynamic instance in memory. |
|
58
|
|
|
|
|
59
|
|
|
""" |
|
60
|
|
|
super().__init__(phase, time, ccore); |
|
61
|
|
|
|
|
62
|
|
|
|
|
63
|
|
|
class syncpr_visualizer(sync_visualizer): |
|
64
|
|
|
"""! |
|
65
|
|
|
@brief Visualizer of output dynamic of syncpr network (Sync for Pattern Recognition). |
|
66
|
|
|
|
|
67
|
|
|
""" |
|
68
|
|
|
|
|
69
|
|
|
@staticmethod |
|
70
|
|
|
def show_pattern(syncpr_output_dynamic, image_height, image_width): |
|
71
|
|
|
"""! |
|
72
|
|
|
@brief Displays evolution of phase oscillators as set of patterns where the last one means final result of recognition. |
|
73
|
|
|
|
|
74
|
|
|
@param[in] syncpr_output_dynamic (syncpr_dynamic): Output dynamic of a syncpr network. |
|
75
|
|
|
@param[in] image_height (uint): Height of the pattern (image_height * image_width should be equal to number of oscillators). |
|
76
|
|
|
@param[in] image_width (uint): Width of the pattern. |
|
77
|
|
|
|
|
78
|
|
|
""" |
|
79
|
|
|
number_pictures = len(syncpr_output_dynamic); |
|
80
|
|
|
iteration_math_step = 1.0; |
|
81
|
|
|
if (number_pictures > 50): |
|
82
|
|
|
iteration_math_step = number_pictures / 50.0; |
|
83
|
|
|
number_pictures = 50; |
|
84
|
|
|
|
|
85
|
|
|
number_cols = int(numpy.ceil(number_pictures ** 0.5)); |
|
86
|
|
|
number_rows = int(numpy.ceil(number_pictures / number_cols)); |
|
87
|
|
|
|
|
88
|
|
|
real_index = 0, 0; |
|
89
|
|
|
double_indexer = True; |
|
90
|
|
|
if ( (number_cols == 1) or (number_rows == 1) ): |
|
91
|
|
|
real_index = 0; |
|
92
|
|
|
double_indexer = False; |
|
93
|
|
|
|
|
94
|
|
|
(_, axarr) = plt.subplots(number_rows, number_cols); |
|
95
|
|
|
|
|
96
|
|
|
if (number_pictures > 1): |
|
97
|
|
|
plt.setp([ax for ax in axarr], visible = False); |
|
98
|
|
|
|
|
99
|
|
|
iteration_display = 0.0; |
|
100
|
|
|
for iteration in range(len(syncpr_output_dynamic)): |
|
101
|
|
|
if (iteration >= iteration_display): |
|
102
|
|
|
iteration_display += iteration_math_step; |
|
103
|
|
|
|
|
104
|
|
|
ax_handle = axarr; |
|
105
|
|
|
if (number_pictures > 1): |
|
106
|
|
|
ax_handle = axarr[real_index]; |
|
107
|
|
|
|
|
108
|
|
|
syncpr_visualizer.__show_pattern(ax_handle, syncpr_output_dynamic, image_height, image_width, iteration); |
|
109
|
|
|
|
|
110
|
|
|
if (double_indexer is True): |
|
111
|
|
|
real_index = real_index[0], real_index[1] + 1; |
|
112
|
|
|
if (real_index[1] >= number_cols): |
|
113
|
|
|
real_index = real_index[0] + 1, 0; |
|
114
|
|
|
else: |
|
115
|
|
|
real_index += 1; |
|
116
|
|
|
|
|
117
|
|
|
plt.show(); |
|
118
|
|
|
|
|
119
|
|
|
|
|
120
|
|
|
@staticmethod |
|
121
|
|
|
def animate_pattern_recognition(syncpr_output_dynamic, image_height, image_width, animation_velocity = 75, title = None, save_movie = None): |
|
122
|
|
|
"""! |
|
123
|
|
|
@brief Shows animation of pattern recognition process that has been preformed by the oscillatory network. |
|
124
|
|
|
|
|
125
|
|
|
@param[in] syncpr_output_dynamic (syncpr_dynamic): Output dynamic of a syncpr network. |
|
126
|
|
|
@param[in] image_height (uint): Height of the pattern (image_height * image_width should be equal to number of oscillators). |
|
127
|
|
|
@param[in] image_width (uint): Width of the pattern. |
|
128
|
|
|
@param[in] animation_velocity (uint): Interval between frames in milliseconds. |
|
129
|
|
|
@param[in] title (string): Title of the animation that is displayed on a figure if it is specified. |
|
130
|
|
|
@param[in] save_movie (string): If it is specified then animation will be stored to file that is specified in this parameter. |
|
131
|
|
|
|
|
132
|
|
|
""" |
|
133
|
|
|
figure = plt.figure(); |
|
134
|
|
|
|
|
135
|
|
|
def init_frame(): |
|
136
|
|
|
return frame_generation(0); |
|
137
|
|
|
|
|
138
|
|
|
def frame_generation(index_dynamic): |
|
139
|
|
|
figure.clf(); |
|
140
|
|
|
|
|
141
|
|
|
if (title is not None): |
|
142
|
|
|
figure.suptitle(title, fontsize = 26, fontweight = 'bold') |
|
143
|
|
|
|
|
144
|
|
|
ax1 = figure.add_subplot(121, projection='polar'); |
|
145
|
|
|
ax2 = figure.add_subplot(122); |
|
146
|
|
|
|
|
147
|
|
|
dynamic = syncpr_output_dynamic.output[index_dynamic]; |
|
148
|
|
|
|
|
149
|
|
|
artist1, = ax1.plot(dynamic, [1.0] * len(dynamic), marker = 'o', color = 'blue', ls = ''); |
|
150
|
|
|
artist2 = syncpr_visualizer.__show_pattern(ax2, syncpr_output_dynamic, image_height, image_width, index_dynamic); |
|
151
|
|
|
|
|
152
|
|
|
return [ artist1, artist2 ]; |
|
153
|
|
|
|
|
154
|
|
|
cluster_animation = animation.FuncAnimation(figure, frame_generation, len(syncpr_output_dynamic), interval = animation_velocity, init_func = init_frame, repeat_delay = 5000); |
|
155
|
|
|
|
|
156
|
|
|
if (save_movie is not None): |
|
157
|
|
|
# plt.rcParams['animation.ffmpeg_path'] = 'C:\\Users\\annoviko\\programs\\ffmpeg-win64-static\\bin\\ffmpeg.exe'; |
|
158
|
|
|
# ffmpeg_writer = animation.FFMpegWriter(); |
|
159
|
|
|
# cluster_animation.save(save_movie, writer = ffmpeg_writer, fps = 15); |
|
160
|
|
|
cluster_animation.save(save_movie, writer = 'ffmpeg', fps = 15, bitrate = 1500); |
|
161
|
|
|
else: |
|
162
|
|
|
plt.show(); |
|
163
|
|
|
|
|
164
|
|
|
|
|
165
|
|
|
@staticmethod |
|
166
|
|
|
def __show_pattern(ax_handle, syncpr_output_dynamic, image_height, image_width, iteration): |
|
167
|
|
|
"""! |
|
168
|
|
|
@brief Draws pattern on specified ax. |
|
169
|
|
|
|
|
170
|
|
|
@param[in] ax_handle (Axis): Axis where pattern should be drawn. |
|
171
|
|
|
@param[in] syncpr_output_dynamic (syncpr_dynamic): Output dynamic of a syncpr network. |
|
172
|
|
|
@param[in] image_height (uint): Height of the pattern (image_height * image_width should be equal to number of oscillators). |
|
173
|
|
|
@param[in] image_width (uint): Width of the pattern. |
|
174
|
|
|
@param[in] iteration (uint): Simulation iteration that should be used for extracting pattern. |
|
175
|
|
|
|
|
176
|
|
|
@return (matplotlib.artist) Artist (pattern) that is rendered in the canvas. |
|
177
|
|
|
|
|
178
|
|
|
""" |
|
179
|
|
|
|
|
180
|
|
|
current_dynamic = syncpr_output_dynamic.output[iteration]; |
|
181
|
|
|
stage_picture = [(255, 255, 255)] * (image_height * image_width); |
|
182
|
|
|
for index_phase in range(len(current_dynamic)): |
|
183
|
|
|
phase = current_dynamic[index_phase]; |
|
184
|
|
|
|
|
185
|
|
|
pixel_color = math.floor( phase * (255 / (2 * math.pi)) ); |
|
186
|
|
|
stage_picture[index_phase] = (pixel_color, pixel_color, pixel_color); |
|
187
|
|
|
|
|
188
|
|
|
stage = numpy.array(stage_picture, numpy.uint8); |
|
189
|
|
|
stage = numpy.reshape(stage, (image_height, image_width) + ((3),)); # ((3),) it's size of RGB - third dimension. |
|
190
|
|
|
|
|
191
|
|
|
image_cluster = Image.fromarray(stage); |
|
192
|
|
|
|
|
193
|
|
|
artist = ax_handle.imshow(image_cluster, interpolation = 'none'); |
|
194
|
|
|
plt.setp(ax_handle, visible = True); |
|
195
|
|
|
|
|
196
|
|
|
ax_handle.xaxis.set_ticklabels([]); |
|
197
|
|
|
ax_handle.yaxis.set_ticklabels([]); |
|
198
|
|
|
ax_handle.xaxis.set_ticks_position('none'); |
|
199
|
|
|
ax_handle.yaxis.set_ticks_position('none'); |
|
200
|
|
|
|
|
201
|
|
|
return artist; |
|
202
|
|
|
|
|
203
|
|
|
|
|
204
|
|
|
class syncpr(sync_network): |
|
205
|
|
|
"""! |
|
206
|
|
|
@brief Model of phase oscillatory network for pattern recognition that is based on the Kuramoto model. |
|
207
|
|
|
@details The model uses second-order and third-order modes of the Fourier components. |
|
208
|
|
|
|
|
209
|
|
|
CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance. |
|
210
|
|
|
|
|
211
|
|
|
Example: |
|
212
|
|
|
@code |
|
213
|
|
|
# Network size should be equal to size of pattern for learning. |
|
214
|
|
|
net = syncpr(size_network, 0.3, 0.3); |
|
215
|
|
|
|
|
216
|
|
|
# Train network using list of patterns (input images). |
|
217
|
|
|
net.train(image_samples); |
|
218
|
|
|
|
|
219
|
|
|
# Recognize image using 10 steps during 10 seconds of simulation. |
|
220
|
|
|
sync_output_dynamic = net.simulate(10, 10, pattern, solve_type.RK4, True); |
|
221
|
|
|
|
|
222
|
|
|
# Display output dynamic. |
|
223
|
|
|
syncpr_visualizer.show_output_dynamic(sync_output_dynamic); |
|
224
|
|
|
|
|
225
|
|
|
# Display evolution of recognition of the pattern. |
|
226
|
|
|
syncpr_visualizer.show_pattern(sync_output_dynamic, image_height, image_width); |
|
227
|
|
|
|
|
228
|
|
|
@endcode |
|
229
|
|
|
|
|
230
|
|
|
""" |
|
231
|
|
|
|
|
232
|
|
|
def __init__(self, num_osc, increase_strength1, increase_strength2, ccore = True): |
|
233
|
|
|
"""! |
|
234
|
|
|
@brief Constructor of oscillatory network for pattern recognition based on Kuramoto model. |
|
235
|
|
|
|
|
236
|
|
|
@param[in] num_osc (uint): Number of oscillators in the network. |
|
237
|
|
|
@param[in] increase_strength1 (double): Parameter for increasing strength of the second term of the Fourier component. |
|
238
|
|
|
@param[in] increase_strength2 (double): Parameter for increasing strength of the third term of the Fourier component. |
|
239
|
|
|
@param[in] ccore (bool): If True simulation is performed by CCORE library (C++ implementation of pyclustering). |
|
240
|
|
|
|
|
241
|
|
|
""" |
|
242
|
|
|
|
|
243
|
|
|
if ( (ccore is True) and ccore_library.workable() ): |
|
244
|
|
|
self._ccore_network_pointer = wrapper.syncpr_create(num_osc, increase_strength1, increase_strength2); |
|
245
|
|
|
|
|
246
|
|
|
else: |
|
247
|
|
|
self._increase_strength1 = increase_strength1; |
|
248
|
|
|
self._increase_strength2 = increase_strength2; |
|
249
|
|
|
self._coupling = [ [0.0 for i in range(num_osc)] for j in range(num_osc) ]; |
|
250
|
|
|
|
|
251
|
|
|
super().__init__(num_osc, 1, 0, conn_type.ALL_TO_ALL, conn_represent.MATRIX, initial_type.RANDOM_GAUSSIAN, ccore) |
|
252
|
|
|
|
|
253
|
|
|
|
|
254
|
|
|
def __del__(self): |
|
255
|
|
|
"""! |
|
256
|
|
|
@brief Default destructor of syncpr. |
|
257
|
|
|
|
|
258
|
|
|
""" |
|
259
|
|
|
|
|
260
|
|
|
if (self._ccore_network_pointer is not None): |
|
261
|
|
|
wrapper.syncpr_destroy(self._ccore_network_pointer); |
|
262
|
|
|
self._ccore_network_pointer = None; |
|
263
|
|
|
|
|
264
|
|
|
|
|
265
|
|
|
def __len__(self): |
|
266
|
|
|
"""! |
|
267
|
|
|
@brief Returns size of the network. |
|
268
|
|
|
|
|
269
|
|
|
""" |
|
270
|
|
|
if (self._ccore_network_pointer is not None): |
|
271
|
|
|
return wrapper.syncpr_get_size(self._ccore_network_pointer); |
|
272
|
|
|
|
|
273
|
|
|
else: |
|
274
|
|
|
return self._num_osc; |
|
275
|
|
|
|
|
276
|
|
|
|
|
277
|
|
|
def train(self, samples): |
|
278
|
|
|
"""! |
|
279
|
|
|
@brief Trains syncpr network using Hebbian rule for adjusting strength of connections between oscillators during training. |
|
280
|
|
|
|
|
281
|
|
|
@param[in] samples (list): list of patterns where each pattern is represented by list of features that are equal to [-1; 1]. |
|
282
|
|
|
|
|
283
|
|
|
""" |
|
284
|
|
|
|
|
285
|
|
|
# Verify pattern for learning |
|
286
|
|
|
for pattern in samples: |
|
287
|
|
|
self.__validate_pattern(pattern); |
|
288
|
|
|
|
|
289
|
|
|
if (self._ccore_network_pointer is not None): |
|
290
|
|
|
return wrapper.syncpr_train(self._ccore_network_pointer, samples); |
|
291
|
|
|
|
|
292
|
|
|
length = len(self); |
|
293
|
|
|
number_samples = len(samples); |
|
294
|
|
|
|
|
295
|
|
|
for i in range(length): |
|
296
|
|
|
for j in range(i + 1, len(self), 1): |
|
297
|
|
|
|
|
298
|
|
|
# go through via all patterns |
|
299
|
|
|
for p in range(number_samples): |
|
300
|
|
|
value1 = samples[p][i]; |
|
301
|
|
|
value2 = samples[p][j]; |
|
302
|
|
|
|
|
303
|
|
|
self._coupling[i][j] += value1 * value2; |
|
304
|
|
|
|
|
305
|
|
|
self._coupling[i][j] /= length; |
|
306
|
|
|
self._coupling[j][i] = self._coupling[i][j]; |
|
307
|
|
|
|
|
308
|
|
|
|
|
309
|
|
|
def simulate(self, steps, time, pattern, solution = solve_type.RK4, collect_dynamic = True): |
|
|
|
|
|
|
310
|
|
|
"""! |
|
311
|
|
|
@brief Performs static simulation of syncpr oscillatory network. |
|
312
|
|
|
@details In other words network performs pattern recognition during simulation. |
|
313
|
|
|
|
|
314
|
|
|
@param[in] steps (uint): Number steps of simulations during simulation. |
|
315
|
|
|
@param[in] time (double): Time of simulation. |
|
316
|
|
|
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1]. |
|
317
|
|
|
@param[in] solution (solve_type): Type of solver that should be used for simulation. |
|
318
|
|
|
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics. |
|
319
|
|
|
|
|
320
|
|
|
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time, |
|
321
|
|
|
otherwise returns only last values (last step of simulation) of dynamic. |
|
322
|
|
|
|
|
323
|
|
|
@see simulate_dynamic() |
|
324
|
|
|
@see simulate_static() |
|
325
|
|
|
|
|
326
|
|
|
""" |
|
327
|
|
|
|
|
328
|
|
|
return self.simulate_static(steps, time, pattern, solution, collect_dynamic); |
|
329
|
|
|
|
|
330
|
|
|
|
|
331
|
|
|
def simulate_dynamic(self, pattern, order = 0.998, solution = solve_type.RK4, collect_dynamic = False, step = 0.1, int_step = 0.01, threshold_changes = 0.0000001): |
|
|
|
|
|
|
332
|
|
|
"""! |
|
333
|
|
|
@brief Performs dynamic simulation of the network until stop condition is not reached. |
|
334
|
|
|
@details In other words network performs pattern recognition during simulation. |
|
335
|
|
|
Stop condition is defined by input argument 'order' that represents memory order, but |
|
336
|
|
|
process of simulation can be stopped if convergance rate is low whose threshold is defined |
|
337
|
|
|
by the argument 'threshold_changes'. |
|
338
|
|
|
|
|
339
|
|
|
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1]. |
|
340
|
|
|
@param[in] order (double): Order of process synchronization, distributed 0..1. |
|
341
|
|
|
@param[in] solution (solve_type): Type of solution. |
|
342
|
|
|
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics. |
|
343
|
|
|
@param[in] step (double): Time step of one iteration of simulation. |
|
344
|
|
|
@param[in] int_step (double): Integration step, should be less than step. |
|
345
|
|
|
@param[in] threshold_changes (double): Additional stop condition that helps prevent infinite simulation, defines limit of changes of oscillators between current and previous steps. |
|
346
|
|
|
|
|
347
|
|
|
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time, |
|
348
|
|
|
otherwise returns only last values (last step of simulation) of dynamic. |
|
349
|
|
|
|
|
350
|
|
|
@see simulate() |
|
351
|
|
|
@see simulate_static() |
|
352
|
|
|
|
|
353
|
|
|
""" |
|
354
|
|
|
|
|
355
|
|
|
self.__validate_pattern(pattern); |
|
356
|
|
|
|
|
357
|
|
|
if (self._ccore_network_pointer is not None): |
|
358
|
|
|
ccore_instance_dynamic = wrapper.syncpr_simulate_dynamic(self._ccore_network_pointer, pattern, order, solution, collect_dynamic, step); |
|
359
|
|
|
return syncpr_dynamic(None, None, ccore_instance_dynamic); |
|
360
|
|
|
|
|
361
|
|
|
for i in range(0, len(pattern), 1): |
|
362
|
|
|
if (pattern[i] > 0.0): |
|
363
|
|
|
self._phases[i] = 0.0; |
|
364
|
|
|
else: |
|
365
|
|
|
self._phases[i] = math.pi / 2.0; |
|
366
|
|
|
|
|
367
|
|
|
# For statistics and integration |
|
368
|
|
|
time_counter = 0; |
|
369
|
|
|
|
|
370
|
|
|
# Prevent infinite loop. It's possible when required state cannot be reached. |
|
371
|
|
|
previous_order = 0; |
|
372
|
|
|
current_order = self.__calculate_memory_order(pattern); |
|
373
|
|
|
|
|
374
|
|
|
# If requested input dynamics |
|
375
|
|
|
dyn_phase = []; |
|
376
|
|
|
dyn_time = []; |
|
377
|
|
|
if (collect_dynamic == True): |
|
378
|
|
|
dyn_phase.append(self._phases); |
|
379
|
|
|
dyn_time.append(0); |
|
380
|
|
|
|
|
381
|
|
|
# Execute until sync state will be reached |
|
382
|
|
|
while (current_order < order): |
|
383
|
|
|
# update states of oscillators |
|
384
|
|
|
self._phases = self._calculate_phases(solution, time_counter, step, int_step); |
|
385
|
|
|
|
|
386
|
|
|
# update time |
|
387
|
|
|
time_counter += step; |
|
388
|
|
|
|
|
389
|
|
|
# if requested input dynamic |
|
390
|
|
|
if (collect_dynamic == True): |
|
391
|
|
|
dyn_phase.append(self._phases); |
|
392
|
|
|
dyn_time.append(time_counter); |
|
393
|
|
|
|
|
394
|
|
|
# update orders |
|
395
|
|
|
previous_order = current_order; |
|
396
|
|
|
current_order = self.__calculate_memory_order(pattern); |
|
397
|
|
|
|
|
398
|
|
|
# hang prevention |
|
399
|
|
|
if (abs(current_order - previous_order) < threshold_changes): |
|
400
|
|
|
break; |
|
401
|
|
|
|
|
402
|
|
|
if (collect_dynamic != True): |
|
403
|
|
|
dyn_phase.append(self._phases); |
|
404
|
|
|
dyn_time.append(time_counter); |
|
405
|
|
|
|
|
406
|
|
|
output_sync_dynamic = syncpr_dynamic(dyn_phase, dyn_time, None); |
|
407
|
|
|
return output_sync_dynamic; |
|
408
|
|
|
|
|
409
|
|
|
|
|
410
|
|
|
def simulate_static(self, steps, time, pattern, solution = solve_type.FAST, collect_dynamic = False): |
|
|
|
|
|
|
411
|
|
|
"""! |
|
412
|
|
|
@brief Performs static simulation of syncpr oscillatory network. |
|
413
|
|
|
@details In other words network performs pattern recognition during simulation. |
|
414
|
|
|
|
|
415
|
|
|
@param[in] steps (uint): Number steps of simulations during simulation. |
|
416
|
|
|
@param[in] time (double): Time of simulation. |
|
417
|
|
|
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1]. |
|
418
|
|
|
@param[in] solution (solve_type): Type of solution. |
|
419
|
|
|
@param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics. |
|
420
|
|
|
|
|
421
|
|
|
@return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' = True, than return dynamic for the whole simulation time, |
|
422
|
|
|
otherwise returns only last values (last step of simulation) of dynamic. |
|
423
|
|
|
|
|
424
|
|
|
@see simulate() |
|
425
|
|
|
@see simulate_dynamic() |
|
426
|
|
|
|
|
427
|
|
|
""" |
|
428
|
|
|
|
|
429
|
|
|
self.__validate_pattern(pattern); |
|
430
|
|
|
|
|
431
|
|
|
if (self._ccore_network_pointer is not None): |
|
432
|
|
|
ccore_instance_dynamic = wrapper.syncpr_simulate_static(self._ccore_network_pointer, steps, time, pattern, solution, collect_dynamic); |
|
433
|
|
|
return syncpr_dynamic(None, None, ccore_instance_dynamic); |
|
434
|
|
|
|
|
435
|
|
|
for i in range(0, len(pattern), 1): |
|
436
|
|
|
if (pattern[i] > 0.0): |
|
437
|
|
|
self._phases[i] = 0.0; |
|
438
|
|
|
else: |
|
439
|
|
|
self._phases[i] = math.pi / 2.0; |
|
440
|
|
|
|
|
441
|
|
|
return super().simulate_static(steps, time, solution, collect_dynamic); |
|
442
|
|
|
|
|
443
|
|
|
|
|
444
|
|
|
def memory_order(self, pattern): |
|
445
|
|
|
"""! |
|
446
|
|
|
@brief Calculates function of the memorized pattern. |
|
447
|
|
|
@details Throws exception if length of pattern is not equal to size of the network or if it consists feature with value that are not equal to [-1; 1]. |
|
448
|
|
|
|
|
449
|
|
|
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1]. |
|
450
|
|
|
|
|
451
|
|
|
@return (double) Order of memory for the specified pattern. |
|
452
|
|
|
|
|
453
|
|
|
""" |
|
454
|
|
|
|
|
455
|
|
|
self.__validate_pattern(pattern); |
|
456
|
|
|
|
|
457
|
|
|
if (self._ccore_network_pointer is not None): |
|
458
|
|
|
return wrapper.syncpr_memory_order(self._ccore_network_pointer, pattern); |
|
459
|
|
|
|
|
460
|
|
|
else: |
|
461
|
|
|
return self.__calculate_memory_order(pattern); |
|
462
|
|
|
|
|
463
|
|
|
|
|
464
|
|
|
def __calculate_memory_order(self, pattern): |
|
465
|
|
|
"""! |
|
466
|
|
|
@brief Calculates function of the memorized pattern without any pattern validation. |
|
467
|
|
|
|
|
468
|
|
|
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1]. |
|
469
|
|
|
|
|
470
|
|
|
@return (double) Order of memory for the specified pattern. |
|
471
|
|
|
|
|
472
|
|
|
""" |
|
473
|
|
|
|
|
474
|
|
|
memory_order = 0.0; |
|
475
|
|
|
for index in range(len(self)): |
|
476
|
|
|
memory_order += pattern[index] * cmath.exp( 1j * self._phases[index] ); |
|
477
|
|
|
|
|
478
|
|
|
memory_order /= len(self); |
|
479
|
|
|
return abs(memory_order); |
|
480
|
|
|
|
|
481
|
|
|
|
|
482
|
|
|
def _phase_kuramoto(self, teta, t, argv): |
|
483
|
|
|
"""! |
|
484
|
|
|
@brief Returns result of phase calculation for specified oscillator in the network. |
|
485
|
|
|
|
|
486
|
|
|
@param[in] teta (double): Phase of the oscillator that is differentiated. |
|
487
|
|
|
@param[in] t (double): Current time of simulation. |
|
488
|
|
|
@param[in] argv (tuple): Index of the oscillator in the list. |
|
489
|
|
|
|
|
490
|
|
|
@return (double) New phase for specified oscillator (don't assign it here). |
|
491
|
|
|
|
|
492
|
|
|
""" |
|
493
|
|
|
|
|
494
|
|
|
index = argv; |
|
495
|
|
|
|
|
496
|
|
|
phase = 0.0; |
|
497
|
|
|
term = 0.0; |
|
498
|
|
|
|
|
499
|
|
|
for k in range(0, self._num_osc): |
|
500
|
|
|
if (k != index): |
|
501
|
|
|
phase_delta = self._phases[k] - teta; |
|
502
|
|
|
|
|
503
|
|
|
phase += self._coupling[index][k] * math.sin(phase_delta); |
|
504
|
|
|
|
|
505
|
|
|
term1 = self._increase_strength1 * math.sin(2.0 * phase_delta); |
|
506
|
|
|
term2 = self._increase_strength2 * math.sin(3.0 * phase_delta); |
|
507
|
|
|
|
|
508
|
|
|
term += (term1 - term2); |
|
509
|
|
|
|
|
510
|
|
|
return ( phase + term / len(self) ); |
|
511
|
|
|
|
|
512
|
|
|
|
|
513
|
|
|
def __validate_pattern(self, pattern): |
|
514
|
|
|
"""! |
|
515
|
|
|
@brief Validates pattern. |
|
516
|
|
|
@details Throws exception if length of pattern is not equal to size of the network or if it consists feature with value that are not equal to [-1; 1]. |
|
517
|
|
|
|
|
518
|
|
|
@param[in] pattern (list): Pattern for recognition represented by list of features that are equal to [-1; 1]. |
|
519
|
|
|
|
|
520
|
|
|
""" |
|
521
|
|
|
if (len(pattern) != len(self)): |
|
522
|
|
|
raise NameError('syncpr: length of the pattern (' + len(pattern) + ') should be equal to size of the network'); |
|
523
|
|
|
|
|
524
|
|
|
for feature in pattern: |
|
525
|
|
|
if ( (feature != -1.0) and (feature != 1.0) ): |
|
526
|
|
|
raise NameError('syncpr: patten feature (' + feature + ') should be distributed in [-1; 1]'); |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.