Total Complexity | 178 |
Total Lines | 798 |
Duplicated Lines | 0.5 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like som often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """! |
||
114 | class som: |
||
115 | """! |
||
116 | @brief Represents self-organized feature map (SOM). |
||
117 | @details The self-organizing feature map (SOM) method is a powerful tool for the visualization of |
||
118 | of high-dimensional data. It converts complex, nonlinear statistical relationships between |
||
119 | high-dimensional data into simple geometric relationships on a low-dimensional display. |
||
120 | |||
121 | @details CCORE option can be used to use the pyclustering core - C/C++ shared library for processing that significantly increases performance. |
||
122 | |||
123 | Example: |
||
124 | @code |
||
125 | # sample for training |
||
126 | sample_train = read_sample(file_train_sample); |
||
127 | |||
128 | # create self-organized feature map with size 5x5 |
||
129 | network = som(5, 5, sample_train, 100); |
||
130 | |||
131 | # train network |
||
132 | network.train(); |
||
133 | |||
134 | # simulate using another sample |
||
135 | sample = read_sample(file_sample); |
||
136 | index_winner = network.simulate(sample); |
||
137 | |||
138 | # check what it is. |
||
139 | index_similar_objects = network.capture_objects[index_winner]; |
||
140 | |||
141 | # result visualization: |
||
142 | # show distance matrix (U-matrix). |
||
143 | network.show_distance_matrix(); |
||
144 | |||
145 | # show density matrix (P-matrix). |
||
146 | network.show_density_matrix(); |
||
147 | |||
148 | # show winner matrix. |
||
149 | network.show_winner_matrix(); |
||
150 | |||
151 | # show self-organized map. |
||
152 | network.show_network(); |
||
153 | @endcode |
||
154 | |||
155 | There is a visualization of 'Target' sample that was done by the self-organized feature map: |
||
156 | @image html target_som_processing.png |
||
157 | |||
158 | """ |
||
159 | |||
160 | |||
161 | @property |
||
162 | def size(self): |
||
163 | """! |
||
164 | @return (uint) Size of self-organized map (number of neurons). |
||
165 | |||
166 | """ |
||
167 | |||
168 | if (self.__ccore_som_pointer is not None): |
||
169 | self._size = wrapper.som_get_size(self.__ccore_som_pointer); |
||
170 | |||
171 | return self._size; |
||
172 | |||
173 | @property |
||
174 | def weights(self): |
||
175 | """! |
||
176 | @return (list) Weights of each neuron. |
||
177 | |||
178 | """ |
||
179 | |||
180 | if (self.__ccore_som_pointer is not None): |
||
181 | self._weights = wrapper.som_get_weights(self.__ccore_som_pointer); |
||
182 | |||
183 | return self._weights; |
||
184 | |||
185 | @property |
||
186 | def awards(self): |
||
187 | """! |
||
188 | @return (list) Numbers of captured objects by each neuron. |
||
189 | |||
190 | """ |
||
191 | |||
192 | if (self.__ccore_som_pointer is not None): |
||
193 | self._award = wrapper.som_get_awards(self.__ccore_som_pointer); |
||
194 | |||
195 | return self._award; |
||
196 | |||
197 | @property |
||
198 | def capture_objects(self): |
||
199 | """! |
||
200 | @return (list) Indexes of captured objects by each neuron. |
||
201 | |||
202 | """ |
||
203 | |||
204 | if (self.__ccore_som_pointer is not None): |
||
205 | self._capture_objects = wrapper.som_get_capture_objects(self.__ccore_som_pointer); |
||
206 | |||
207 | return self._capture_objects; |
||
208 | |||
209 | |||
210 | def __init__(self, rows, cols, conn_type = type_conn.grid_eight, parameters = None, ccore = True): |
||
211 | """! |
||
212 | @brief Constructor of self-organized map. |
||
213 | |||
214 | @param[in] rows (uint): Number of neurons in the column (number of rows). |
||
215 | @param[in] cols (uint): Number of neurons in the row (number of columns). |
||
216 | @param[in] conn_type (type_conn): Type of connection between oscillators in the network (grid four, grid eight, honeycomb, function neighbour). |
||
217 | @param[in] parameters (som_parameters): Other specific parameters. |
||
218 | @param[in] ccore (bool): If True simulation is performed by CCORE library (C++ implementation of pyclustering). |
||
219 | |||
220 | """ |
||
221 | |||
222 | # some of these parameters are required despite core implementation, for example, for network demonstration. |
||
223 | self._cols = cols; |
||
224 | |||
225 | self._rows = rows; |
||
226 | |||
227 | self._size = cols * rows; |
||
228 | |||
229 | self._conn_type = conn_type; |
||
230 | |||
231 | self._data = None; |
||
232 | |||
233 | self._neighbors = None; |
||
234 | |||
235 | self._local_radius = 0.0; |
||
236 | |||
237 | self._learn_rate = 0.0; |
||
238 | |||
239 | self.__ccore_som_pointer = None; |
||
240 | |||
241 | if (parameters is not None): |
||
242 | self._params = parameters; |
||
243 | else: |
||
244 | self._params = som_parameters(); |
||
245 | |||
246 | if (self._params.init_radius is None): |
||
247 | self._params.init_radius = self.__initialize_initial_radius(rows, cols); |
||
248 | |||
249 | if ( (ccore is True) and ccore_library.workable() ): |
||
250 | self.__ccore_som_pointer = wrapper.som_create(rows, cols, conn_type, self._params); |
||
251 | |||
252 | else: |
||
253 | # location |
||
254 | self._location = self.__initialize_locations(rows, cols); |
||
255 | |||
256 | # default weights |
||
257 | self._weights = [ [0.0] ] * self._size; |
||
258 | |||
259 | # awards |
||
260 | self._award = [0] * self._size; |
||
261 | |||
262 | # captured objects |
||
263 | self._capture_objects = [ [] for i in range(self._size) ]; |
||
264 | |||
265 | # distances |
||
266 | self._sqrt_distances = self.__initialize_distances(self._size, self._location); |
||
267 | |||
268 | # connections |
||
269 | if (conn_type != type_conn.func_neighbor): |
||
270 | self._create_connections(conn_type); |
||
271 | |||
272 | |||
273 | def __del__(self): |
||
274 | """! |
||
275 | @brief Destructor of the self-organized feature map. |
||
276 | |||
277 | """ |
||
278 | |||
279 | if (self.__ccore_som_pointer is not None): |
||
280 | wrapper.som_destroy(self.__ccore_som_pointer); |
||
281 | |||
282 | |||
283 | def __len__(self): |
||
284 | """! |
||
285 | @return (uint) Size of self-organized map (number of neurons). |
||
286 | |||
287 | """ |
||
288 | |||
289 | return self._size; |
||
290 | |||
291 | |||
292 | def __initialize_initial_radius(self, rows, cols): |
||
293 | """! |
||
294 | @brief Initialize initial radius using map sizes. |
||
295 | |||
296 | @param[in] rows (uint): Number of neurons in the column (number of rows). |
||
297 | @param[in] cols (uint): Number of neurons in the row (number of columns). |
||
298 | |||
299 | @return (list) Value of initial radius. |
||
300 | |||
301 | """ |
||
302 | |||
303 | if ((cols + rows) / 4.0 > 1.0): |
||
304 | return 2.0; |
||
305 | |||
306 | elif ( (cols > 1) and (rows > 1) ): |
||
307 | return 1.5; |
||
308 | |||
309 | else: |
||
310 | return 1.0; |
||
311 | |||
312 | |||
313 | def __initialize_locations(self, rows, cols): |
||
314 | """! |
||
315 | @brief Initialize locations (coordinates in SOM grid) of each neurons in the map. |
||
316 | |||
317 | @param[in] rows (uint): Number of neurons in the column (number of rows). |
||
318 | @param[in] cols (uint): Number of neurons in the row (number of columns). |
||
319 | |||
320 | @return (list) List of coordinates of each neuron in map. |
||
321 | |||
322 | """ |
||
323 | |||
324 | location = list(); |
||
325 | for i in range(rows): |
||
326 | for j in range(cols): |
||
327 | location.append([float(i), float(j)]); |
||
328 | |||
329 | return location; |
||
330 | |||
331 | |||
332 | def __initialize_distances(self, size, location): |
||
333 | """! |
||
334 | @brief Initialize distance matrix in SOM grid. |
||
335 | |||
336 | @param[in] size (uint): Amount of neurons in the network. |
||
337 | @param[in] location (list): List of coordinates of each neuron in the network. |
||
338 | |||
339 | @return (list) Distance matrix between neurons in the network. |
||
340 | |||
341 | """ |
||
342 | sqrt_distances = [ [ [] for i in range(size) ] for j in range(size) ]; |
||
343 | for i in range(size): |
||
344 | for j in range(i, size, 1): |
||
345 | dist = euclidean_distance_sqrt(location[i], location[j]); |
||
346 | sqrt_distances[i][j] = dist; |
||
347 | sqrt_distances[j][i] = dist; |
||
348 | |||
349 | return sqrt_distances; |
||
350 | |||
351 | |||
352 | def _create_initial_weights(self, init_type): |
||
353 | """! |
||
354 | @brief Creates initial weights for neurons in line with the specified initialization. |
||
355 | |||
356 | @param[in] init_type (type_init): Type of initialization of initial neuron weights (random, random in center of the input data, random distributed in data, ditributed in line with uniform grid). |
||
357 | |||
358 | """ |
||
359 | |||
360 | dim_info = dimension_info(self._data); |
||
361 | |||
362 | step_x = dim_info.get_center()[0]; |
||
363 | if (self._rows > 1): step_x = dim_info.get_width()[0] / (self._rows - 1); |
||
364 | |||
365 | step_y = 0.0; |
||
366 | if (dim_info.get_dimensions() > 1): |
||
367 | step_y = dim_info.get_center()[1]; |
||
368 | if (self._cols > 1): step_y = dim_info.get_width()[1] / (self._cols - 1); |
||
369 | |||
370 | # generate weights (topological coordinates) |
||
371 | random.seed(); |
||
372 | |||
373 | # Feature SOM 0002: Uniform grid. |
||
374 | if (init_type == type_init.uniform_grid): |
||
375 | # Predefined weights in line with input data. |
||
376 | self._weights = [ [ [] for i in range(dim_info.get_dimensions()) ] for j in range(self._size)]; |
||
377 | for i in range(self._size): |
||
378 | location = self._location[i]; |
||
379 | for dim in range(dim_info.get_dimensions()): |
||
380 | if (dim == 0): |
||
381 | if (self._rows > 1): |
||
382 | self._weights[i][dim] = dim_info.get_minimum_coordinate()[dim] + step_x * location[dim]; |
||
383 | else: |
||
384 | self._weights[i][dim] = dim_info.get_center()[dim]; |
||
385 | |||
386 | elif (dim == 1): |
||
387 | if (self._cols > 1): |
||
388 | self._weights[i][dim] = dim_info.get_minimum_coordinate()[dim] + step_y * location[dim]; |
||
389 | else: |
||
390 | self._weights[i][dim] = dim_info.get_center()[dim]; |
||
391 | else: |
||
392 | self._weights[i][dim] = dim_info.get_center()[dim]; |
||
393 | |||
394 | elif (init_type == type_init.random_surface): |
||
395 | # Random weights at the full surface. |
||
396 | self._weights = [ [random.uniform(dim_info.get_minimum_coordinate()[i], dim_info.get_maximum_coordinate()[i]) for i in range(dim_info.get_dimensions())] for _ in range(self._size) ]; |
||
397 | |||
398 | elif (init_type == type_init.random_centroid): |
||
399 | # Random weights at the center of input data. |
||
400 | self._weights = [ [(random.random() + dim_info.get_center()[i]) for i in range(dim_info.get_dimensions())] for _ in range(self._size) ]; |
||
401 | |||
402 | else: |
||
403 | # Random weights of input data. |
||
404 | self._weights = [ [random.random() for i in range(dim_info.get_dimensions())] for _ in range(self._size) ]; |
||
405 | |||
406 | |||
407 | def _create_connections(self, conn_type): |
||
408 | """! |
||
409 | @brief Create connections in line with input rule (grid four, grid eight, honeycomb, function neighbour). |
||
410 | |||
411 | @param[in] conn_type (type_conn): Type of connection between oscillators in the network. |
||
412 | |||
413 | """ |
||
414 | |||
415 | self._neighbors = [[] for index in range(self._size)]; |
||
416 | |||
417 | for index in range(0, self._size, 1): |
||
418 | upper_index = index - self._cols; |
||
419 | upper_left_index = index - self._cols - 1; |
||
420 | upper_right_index = index - self._cols + 1; |
||
421 | |||
422 | lower_index = index + self._cols; |
||
423 | lower_left_index = index + self._cols - 1; |
||
424 | lower_right_index = index + self._cols + 1; |
||
425 | |||
426 | left_index = index - 1; |
||
427 | right_index = index + 1; |
||
428 | |||
429 | node_row_index = math.floor(index / self._cols); |
||
430 | upper_row_index = node_row_index - 1; |
||
431 | lower_row_index = node_row_index + 1; |
||
432 | |||
433 | if ( (conn_type == type_conn.grid_eight) or (conn_type == type_conn.grid_four) ): |
||
434 | if (upper_index >= 0): |
||
435 | self._neighbors[index].append(upper_index); |
||
436 | |||
437 | if (lower_index < self._size): |
||
438 | self._neighbors[index].append(lower_index); |
||
439 | |||
440 | if ( (conn_type == type_conn.grid_eight) or (conn_type == type_conn.grid_four) or (conn_type == type_conn.honeycomb) ): |
||
441 | if ( (left_index >= 0) and (math.floor(left_index / self._cols) == node_row_index) ): |
||
442 | self._neighbors[index].append(left_index); |
||
443 | |||
444 | if ( (right_index < self._size) and (math.floor(right_index / self._cols) == node_row_index) ): |
||
445 | self._neighbors[index].append(right_index); |
||
446 | |||
447 | |||
448 | if (conn_type == type_conn.grid_eight): |
||
449 | if ( (upper_left_index >= 0) and (math.floor(upper_left_index / self._cols) == upper_row_index) ): |
||
450 | self._neighbors[index].append(upper_left_index); |
||
451 | |||
452 | if ( (upper_right_index >= 0) and (math.floor(upper_right_index / self._cols) == upper_row_index) ): |
||
453 | self._neighbors[index].append(upper_right_index); |
||
454 | |||
455 | if ( (lower_left_index < self._size) and (math.floor(lower_left_index / self._cols) == lower_row_index) ): |
||
456 | self._neighbors[index].append(lower_left_index); |
||
457 | |||
458 | if ( (lower_right_index < self._size) and (math.floor(lower_right_index / self._cols) == lower_row_index) ): |
||
459 | self._neighbors[index].append(lower_right_index); |
||
460 | |||
461 | |||
462 | if (conn_type == type_conn.honeycomb): |
||
463 | if ( (node_row_index % 2) == 0): |
||
464 | upper_left_index = index - self._cols; |
||
465 | upper_right_index = index - self._cols + 1; |
||
466 | |||
467 | lower_left_index = index + self._cols; |
||
468 | lower_right_index = index + self._cols + 1; |
||
469 | else: |
||
470 | upper_left_index = index - self._cols - 1; |
||
471 | upper_right_index = index - self._cols; |
||
472 | |||
473 | lower_left_index = index + self._cols - 1; |
||
474 | lower_right_index = index + self._cols; |
||
475 | |||
476 | if ( (upper_left_index >= 0) and (math.floor(upper_left_index / self._cols) == upper_row_index) ): |
||
477 | self._neighbors[index].append(upper_left_index); |
||
478 | |||
479 | if ( (upper_right_index >= 0) and (math.floor(upper_right_index / self._cols) == upper_row_index) ): |
||
480 | self._neighbors[index].append(upper_right_index); |
||
481 | |||
482 | if ( (lower_left_index < self._size) and (math.floor(lower_left_index / self._cols) == lower_row_index) ): |
||
483 | self._neighbors[index].append(lower_left_index); |
||
484 | |||
485 | if ( (lower_right_index < self._size) and (math.floor(lower_right_index / self._cols) == lower_row_index) ): |
||
486 | self._neighbors[index].append(lower_right_index); |
||
487 | |||
488 | |||
489 | def _competition(self, x): |
||
490 | """! |
||
491 | @brief Calculates neuron winner (distance, neuron index). |
||
492 | |||
493 | @param[in] x (list): Input pattern from the input data set, for example it can be coordinates of point. |
||
494 | |||
495 | @return (uint) Returns index of neuron that is winner. |
||
496 | |||
497 | """ |
||
498 | |||
499 | index = 0; |
||
500 | minimum = euclidean_distance_sqrt(self._weights[0], x); |
||
501 | |||
502 | for i in range(1, self._size, 1): |
||
503 | candidate = euclidean_distance_sqrt(self._weights[i], x); |
||
504 | if (candidate < minimum): |
||
505 | index = i; |
||
506 | minimum = candidate; |
||
507 | |||
508 | return index; |
||
509 | |||
510 | |||
511 | def _adaptation(self, index, x): |
||
512 | """! |
||
513 | @brief Change weight of neurons in line with won neuron. |
||
514 | |||
515 | @param[in] index (uint): Index of neuron-winner. |
||
516 | @param[in] x (list): Input pattern from the input data set. |
||
517 | |||
518 | """ |
||
519 | |||
520 | dimension = len(self._weights[0]); |
||
521 | |||
522 | if (self._conn_type == type_conn.func_neighbor): |
||
523 | for neuron_index in range(self._size): |
||
524 | distance = self._sqrt_distances[index][neuron_index]; |
||
525 | |||
526 | if (distance < self._local_radius): |
||
527 | influence = math.exp( -( distance / (2.0 * self._local_radius) ) ); |
||
528 | |||
529 | for i in range(dimension): |
||
530 | self._weights[neuron_index][i] = self._weights[neuron_index][i] + self._learn_rate * influence * (x[i] - self._weights[neuron_index][i]); |
||
531 | |||
532 | else: |
||
533 | for i in range(dimension): |
||
534 | self._weights[index][i] = self._weights[index][i] + self._learn_rate * (x[i] - self._weights[index][i]); |
||
535 | |||
536 | for neighbor_index in self._neighbors[index]: |
||
537 | distance = self._sqrt_distances[index][neighbor_index] |
||
538 | if (distance < self._local_radius): |
||
539 | influence = math.exp( -( distance / (2.0 * self._local_radius) ) ); |
||
540 | |||
541 | for i in range(dimension): |
||
542 | self._weights[neighbor_index][i] = self._weights[neighbor_index][i] + self._learn_rate * influence * (x[i] - self._weights[neighbor_index][i]); |
||
543 | |||
544 | |||
545 | def train(self, data, epochs, autostop = False): |
||
546 | """! |
||
547 | @brief Trains self-organized feature map (SOM). |
||
548 | |||
549 | @param[in] data (list): Input data - list of points where each point is represented by list of features, for example coordinates. |
||
550 | @param[in] epochs (uint): Number of epochs for training. |
||
551 | @param[in] autostop (bool): Automatic termination of learining process when adaptation is not occurred. |
||
552 | |||
553 | @return (uint) Number of learining iterations. |
||
554 | |||
555 | """ |
||
556 | |||
557 | self._data = data; |
||
558 | |||
559 | if (self.__ccore_som_pointer is not None): |
||
560 | return wrapper.som_train(self.__ccore_som_pointer, data, epochs, autostop); |
||
561 | |||
562 | for i in range(self._size): |
||
563 | self._award[i] = 0; |
||
564 | self._capture_objects[i].clear(); |
||
565 | |||
566 | # weights |
||
567 | self._create_initial_weights(self._params.init_type); |
||
568 | |||
569 | previous_weights = None; |
||
570 | |||
571 | for epoch in range(1, epochs + 1): |
||
572 | # Depression term of coupling |
||
573 | self._local_radius = ( self._params.init_radius * math.exp(-(epoch / epochs)) ) ** 2; |
||
574 | self._learn_rate = self._params.init_learn_rate * math.exp(-(epoch / epochs)); |
||
575 | |||
576 | #random.shuffle(self._data); # Random order |
||
577 | |||
578 | # Feature SOM 0003: Clear statistics |
||
579 | if (autostop == True): |
||
580 | for i in range(self._size): |
||
581 | self._award[i] = 0; |
||
582 | self._capture_objects[i].clear(); |
||
583 | |||
584 | for i in range(len(self._data)): |
||
585 | # Step 1: Competition: |
||
586 | index = self._competition(self._data[i]); |
||
587 | |||
588 | # Step 2: Adaptation: |
||
589 | self._adaptation(index, self._data[i]); |
||
590 | |||
591 | # Update statistics |
||
592 | if ( (autostop == True) or (epoch == epochs) ): |
||
593 | self._award[index] += 1; |
||
594 | self._capture_objects[index].append(i); |
||
595 | |||
596 | # Feature SOM 0003: Check requirement of stopping |
||
597 | if (autostop == True): |
||
598 | if (previous_weights is not None): |
||
599 | maximal_adaptation = self._get_maximal_adaptation(previous_weights); |
||
600 | if (maximal_adaptation < self._params.adaptation_threshold): |
||
601 | return epoch; |
||
602 | |||
603 | previous_weights = [item[:] for item in self._weights]; |
||
604 | |||
605 | return epochs; |
||
606 | |||
607 | |||
608 | def simulate(self, input_pattern): |
||
609 | """! |
||
610 | @brief Processes input pattern (no learining) and returns index of neuron-winner. |
||
611 | Using index of neuron winner catched object can be obtained using property capture_objects. |
||
612 | |||
613 | @param[in] input_pattern (list): Input pattern. |
||
614 | |||
615 | @return (uint) Returns index of neuron-winner. |
||
616 | |||
617 | @see capture_objects |
||
618 | |||
619 | """ |
||
620 | |||
621 | if (self.__ccore_som_pointer is not None): |
||
622 | return wrapper.som_simulate(self.__ccore_som_pointer, input_pattern); |
||
623 | |||
624 | return self._competition(input_pattern); |
||
625 | |||
626 | |||
627 | def _get_maximal_adaptation(self, previous_weights): |
||
628 | """! |
||
629 | @brief Calculates maximum changes of weight in line with comparison between previous weights and current weights. |
||
630 | |||
631 | @param[in] previous_weights (list): Weights from the previous step of learning process. |
||
632 | |||
633 | @return (double) Value that represents maximum changes of weight after adaptation process. |
||
634 | |||
635 | """ |
||
636 | |||
637 | dimension = len(self._data[0]); |
||
638 | maximal_adaptation = 0.0; |
||
639 | |||
640 | for neuron_index in range(self._size): |
||
641 | for dim in range(dimension): |
||
642 | current_adaptation = previous_weights[neuron_index][dim] - self._weights[neuron_index][dim]; |
||
643 | |||
644 | if (current_adaptation < 0): current_adaptation = -current_adaptation; |
||
645 | |||
646 | if (maximal_adaptation < current_adaptation): |
||
647 | maximal_adaptation = current_adaptation; |
||
648 | |||
649 | return maximal_adaptation; |
||
650 | |||
651 | |||
652 | def get_winner_number(self): |
||
653 | """! |
||
654 | @brief Calculates number of winner at the last step of learning process. |
||
655 | |||
656 | @return (uint) Number of winner. |
||
657 | |||
658 | """ |
||
659 | |||
660 | if (self.__ccore_som_pointer is not None): |
||
661 | self._award = wrapper.som_get_awards(self.__ccore_som_pointer); |
||
662 | |||
663 | winner_number = 0; |
||
664 | for i in range(self._size): |
||
665 | if (self._award[i] > 0): |
||
666 | winner_number += 1; |
||
667 | |||
668 | return winner_number; |
||
669 | |||
670 | |||
671 | def show_distance_matrix(self): |
||
672 | """! |
||
673 | @brief Shows gray visualization of U-matrix (distance matrix). |
||
674 | |||
675 | @see get_distance_matrix() |
||
676 | |||
677 | """ |
||
678 | distance_matrix = self.get_distance_matrix(); |
||
679 | |||
680 | plt.imshow(distance_matrix, cmap = plt.get_cmap('hot'), interpolation='kaiser'); |
||
681 | plt.title("U-Matrix"); |
||
682 | plt.colorbar(); |
||
683 | plt.show(); |
||
684 | |||
685 | |||
686 | def get_distance_matrix(self): |
||
687 | """! |
||
688 | @brief Calculates distance matrix (U-matrix). |
||
689 | @details The U-Matrix visualizes based on the distance in input space between a weight vector and its neighbors on map. |
||
690 | |||
691 | @return (list) Distance matrix (U-matrix). |
||
692 | |||
693 | @see show_distance_matrix() |
||
694 | @see get_density_matrix() |
||
695 | |||
696 | """ |
||
697 | if (self.__ccore_som_pointer is not None): |
||
698 | self._weights = wrapper.som_get_weights(self.__ccore_som_pointer); |
||
699 | |||
700 | if (self._conn_type != type_conn.func_neighbor): |
||
701 | self._neighbors = wrapper.som_get_neighbors(self.__ccore_som_pointer); |
||
702 | |||
703 | distance_matrix = [ [0.0] * self._cols for i in range(self._rows) ]; |
||
704 | |||
705 | for i in range(self._rows): |
||
706 | for j in range(self._cols): |
||
707 | neuron_index = i * self._cols + j; |
||
708 | |||
709 | if (self._conn_type == type_conn.func_neighbor): |
||
710 | self._create_connections(type_conn.grid_eight); |
||
711 | |||
712 | for neighbor_index in self._neighbors[neuron_index]: |
||
713 | distance_matrix[i][j] += euclidean_distance_sqrt(self._weights[neuron_index], self._weights[neighbor_index]); |
||
714 | |||
715 | distance_matrix[i][j] /= len(self._neighbors[neuron_index]); |
||
716 | |||
717 | return distance_matrix; |
||
718 | |||
719 | |||
720 | def show_density_matrix(self, surface_divider = 20.0): |
||
721 | """! |
||
722 | @brief Show density matrix (P-matrix) using kernel density estimation. |
||
723 | |||
724 | @param[in] surface_divider (double): Divider in each dimension that affect radius for density measurement. |
||
725 | |||
726 | @see show_distance_matrix() |
||
727 | |||
728 | """ |
||
729 | density_matrix = self.get_density_matrix(); |
||
730 | |||
731 | plt.imshow(density_matrix, cmap = plt.get_cmap('hot'), interpolation='kaiser'); |
||
732 | plt.title("P-Matrix"); |
||
733 | plt.colorbar(); |
||
734 | plt.show(); |
||
735 | |||
736 | |||
737 | def get_density_matrix(self, surface_divider = 20.0): |
||
738 | """! |
||
739 | @brief Calculates density matrix (P-Matrix). |
||
740 | |||
741 | @param[in] surface_divider (double): Divider in each dimension that affect radius for density measurement. |
||
742 | |||
743 | @return (list) Density matrix (P-Matrix). |
||
744 | |||
745 | @see get_distance_matrix() |
||
746 | |||
747 | """ |
||
748 | |||
749 | if (self.__ccore_som_pointer is not None): |
||
750 | self._weights = wrapper.som_get_weights(self.__ccore_som_pointer); |
||
751 | |||
752 | density_matrix = [ [0] * self._cols for i in range(self._rows) ]; |
||
753 | dimension = len(self._weights[0]); |
||
754 | |||
755 | dim_max = [ float('-Inf') ] * dimension; |
||
756 | dim_min = [ float('Inf') ] * dimension; |
||
757 | |||
758 | for weight in self._weights: |
||
759 | for index_dim in range(dimension): |
||
760 | if (weight[index_dim] > dim_max[index_dim]): |
||
761 | dim_max[index_dim] = weight[index_dim]; |
||
762 | |||
763 | if (weight[index_dim] < dim_min[index_dim]): |
||
764 | dim_min[index_dim] = weight[index_dim]; |
||
765 | |||
766 | radius = [0.0] * len(self._weights[0]); |
||
767 | for index_dim in range(dimension): |
||
768 | radius[index_dim] = ( dim_max[index_dim] - dim_min[index_dim] ) / surface_divider; |
||
769 | |||
770 | for point in self._data: |
||
771 | for index_neuron in range(len(self)): |
||
772 | point_covered = True; |
||
773 | |||
774 | for index_dim in range(dimension): |
||
775 | if (abs(point[index_dim] - self._weights[index_neuron][index_dim]) > radius[index_dim]): |
||
776 | point_covered = False; |
||
777 | break; |
||
778 | |||
779 | row = math.floor(index_neuron / self._cols); |
||
780 | col = index_neuron - row * self._cols; |
||
781 | |||
782 | if (point_covered is True): |
||
783 | density_matrix[row][col] += 1; |
||
784 | |||
785 | return density_matrix; |
||
786 | |||
787 | |||
788 | def show_winner_matrix(self): |
||
789 | """! |
||
790 | @brief Show winner matrix where each element corresponds to neuron and value represents |
||
791 | amount of won objects from input dataspace at the last training iteration. |
||
792 | |||
793 | @see show_distance_matrix() |
||
794 | |||
795 | """ |
||
796 | |||
797 | if (self.__ccore_som_pointer is not None): |
||
798 | self._award = wrapper.som_get_awards(self.__ccore_som_pointer); |
||
799 | |||
800 | (fig, ax) = plt.subplots(); |
||
801 | winner_matrix = [ [0] * self._cols for i in range(self._rows) ]; |
||
802 | |||
803 | for i in range(self._rows): |
||
804 | for j in range(self._cols): |
||
805 | neuron_index = i * self._cols + j; |
||
806 | |||
807 | winner_matrix[i][j] = self._award[neuron_index]; |
||
808 | ax.text(i, j, str(winner_matrix[i][j]), va='center', ha='center') |
||
809 | |||
810 | ax.imshow(winner_matrix, cmap = plt.get_cmap('cool'), interpolation='none'); |
||
811 | ax.grid(True); |
||
812 | |||
813 | plt.title("Winner Matrix"); |
||
814 | plt.show(); |
||
815 | |||
816 | |||
817 | def show_network(self, awards = False, belongs = False, coupling = True, dataset = True, marker_type = 'o'): |
||
818 | """! |
||
819 | @brief Shows neurons in the dimension of data. |
||
820 | |||
821 | @param[in] awards (bool): If True - displays how many objects won each neuron. |
||
822 | @param[in] belongs (bool): If True - marks each won object by according index of neuron-winner (only when dataset is displayed too). |
||
823 | @param[in] coupling (bool): If True - displays connections between neurons (except case when function neighbor is used). |
||
824 | @param[in] dataset (bool): If True - displays inputs data set. |
||
825 | @param[in] marker_type (string): Defines marker that is used for dispaying neurons in the network. |
||
826 | |||
827 | """ |
||
828 | |||
829 | if (self.__ccore_som_pointer is not None): |
||
830 | self._size = wrapper.som_get_size(self.__ccore_som_pointer); |
||
831 | self._weights = wrapper.som_get_weights(self.__ccore_som_pointer); |
||
832 | self._neighbors = wrapper.som_get_neighbors(self.__ccore_som_pointer); |
||
833 | self._award = wrapper.som_get_awards(self.__ccore_som_pointer); |
||
834 | |||
835 | |||
836 | dimension = len(self._weights[0]); |
||
837 | |||
838 | fig = plt.figure(); |
||
839 | axes = None; |
||
840 | |||
841 | # Check for dimensions |
||
842 | if ( (dimension == 1) or (dimension == 2) ): |
||
843 | axes = fig.add_subplot(111); |
||
844 | elif (dimension == 3): |
||
845 | axes = fig.gca(projection='3d'); |
||
846 | else: |
||
847 | raise NameError('Dwawer supports only 1D, 2D and 3D data representation'); |
||
848 | |||
849 | |||
850 | # Show data |
||
851 | if ((self._data is not None) and (dataset is True) ): |
||
852 | for x in self._data: |
||
853 | if (dimension == 1): |
||
854 | axes.plot(x[0], 0.0, 'b|', ms = 30); |
||
855 | |||
856 | elif (dimension == 2): |
||
857 | axes.plot(x[0], x[1], 'b.'); |
||
858 | |||
859 | elif (dimension == 3): |
||
860 | axes.scatter(x[0], x[1], x[2], c = 'b', marker = '.'); |
||
861 | |||
862 | # Show neurons |
||
863 | for index in range(self._size): |
||
864 | color = 'g'; |
||
865 | if (self._award[index] == 0): color = 'y'; |
||
866 | |||
867 | if (dimension == 1): |
||
868 | axes.plot(self._weights[index][0], 0.0, color + marker_type); |
||
869 | |||
870 | if (awards == True): |
||
871 | location = '{0}'.format(self._award[index]); |
||
872 | axes.text(self._weights[index][0], 0.0, location, color='black', fontsize = 10); |
||
873 | |||
874 | if (belongs == True): |
||
875 | location = '{0}'.format(index); |
||
876 | axes.text(self._weights[index][0], 0.0, location, color='black', fontsize = 12); |
||
877 | for k in range(len(self._capture_objects[index])): |
||
878 | point = self._data[self._capture_objects[index][k]]; |
||
879 | axes.text(point[0], 0.0, location, color='blue', fontsize = 10); |
||
880 | |||
881 | if (dimension == 2): |
||
882 | axes.plot(self._weights[index][0], self._weights[index][1], color + marker_type); |
||
883 | |||
884 | if (awards == True): |
||
885 | location = '{0}'.format(self._award[index]); |
||
886 | axes.text(self._weights[index][0], self._weights[index][1], location, color='black', fontsize = 10); |
||
887 | |||
888 | if (belongs == True): |
||
889 | location = '{0}'.format(index); |
||
890 | axes.text(self._weights[index][0], self._weights[index][1], location, color='black', fontsize = 12); |
||
891 | for k in range(len(self._capture_objects[index])): |
||
892 | point = self._data[self._capture_objects[index][k]]; |
||
893 | axes.text(point[0], point[1], location, color='blue', fontsize = 10); |
||
894 | |||
895 | if ( (self._conn_type != type_conn.func_neighbor) and (coupling != False) ): |
||
896 | for neighbor in self._neighbors[index]: |
||
897 | if (neighbor > index): |
||
898 | axes.plot([self._weights[index][0], self._weights[neighbor][0]], [self._weights[index][1], self._weights[neighbor][1]], 'g', linewidth = 0.5); |
||
899 | |||
900 | elif (dimension == 3): |
||
901 | axes.scatter(self._weights[index][0], self._weights[index][1], self._weights[index][2], c = color, marker = marker_type); |
||
902 | |||
903 | if ( (self._conn_type != type_conn.func_neighbor) and (coupling != False) ): |
||
904 | for neighbor in self._neighbors[index]: |
||
905 | if (neighbor > index): |
||
906 | axes.plot([self._weights[index][0], self._weights[neighbor][0]], [self._weights[index][1], self._weights[neighbor][1]], [self._weights[index][2], self._weights[neighbor][2]], 'g-', linewidth = 0.5); |
||
907 | |||
908 | View Code Duplication | ||
909 | plt.title("Network Structure"); |
||
910 | plt.grid(); |
||
911 | plt.show(); |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.