| Total Complexity | 20 |
| Total Lines | 138 |
| Duplicated Lines | 24.64 % |
| Changes | 1 | ||
| Bugs | 0 | Features | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | |||
| 5 | class GAMath: |
||
| 6 | """ |
||
| 7 | """ |
||
| 8 | |||
| 9 | @staticmethod |
||
| 10 | def get_centres(chromosomes, data, count_clusters): |
||
| 11 | """ """ |
||
| 12 | |||
| 13 | # Initialize centres |
||
| 14 | centres = np.zeros((len(chromosomes), count_clusters, len(data[0]))) |
||
| 15 | |||
| 16 | # Calc centers for next chromosome |
||
| 17 | for _idx in range(len(chromosomes)): |
||
| 18 | centres[_idx] = GAMath.calc_centers_for_chromosome(chromosomes[_idx], data, count_clusters) |
||
| 19 | |||
| 20 | return centres |
||
| 21 | |||
| 22 | @staticmethod |
||
| 23 | def calc_centers_for_chromosome(chromosome, data, count_clusters): |
||
| 24 | """ """ |
||
| 25 | |||
| 26 | # Initialize centers |
||
| 27 | centers = np.zeros((count_clusters, len(data[0]))) |
||
| 28 | |||
| 29 | # Next cluster |
||
| 30 | for _idx_cluster in range(count_clusters): |
||
| 31 | centers[_idx_cluster] = GAMath.calc_center(chromosome, data, _idx_cluster) |
||
| 32 | |||
| 33 | return centers |
||
| 34 | |||
| 35 | @staticmethod |
||
| 36 | def calc_center(chromosome, data, cluster_num): |
||
| 37 | """ """ |
||
| 38 | |||
| 39 | # Initialize center |
||
| 40 | center = np.zeros(len(data[0])) |
||
| 41 | |||
| 42 | # Get count data in clusters |
||
| 43 | count_data_in_cluster = 0 |
||
| 44 | |||
| 45 | # Next data point |
||
| 46 | for _idx in range(len(chromosome)): |
||
| 47 | |||
| 48 | # If data associated with current cluster |
||
| 49 | if chromosome[_idx] == cluster_num: |
||
| 50 | center += data[_idx] |
||
| 51 | count_data_in_cluster += 1 |
||
| 52 | |||
| 53 | # If has no data in cluster |
||
| 54 | if count_data_in_cluster == 0: |
||
| 55 | return center |
||
| 56 | |||
| 57 | # Normalize center |
||
| 58 | center /= count_data_in_cluster |
||
| 59 | |||
| 60 | return center |
||
| 61 | |||
| 62 | View Code Duplication | @staticmethod |
|
|
1 ignored issue
–
show
|
|||
| 63 | def calc_probability_vector(fitness): |
||
| 64 | """ """ |
||
| 65 | |||
| 66 | if len(fitness) == 0: |
||
| 67 | raise AttributeError("Has no any fitness functions.") |
||
| 68 | |||
| 69 | # Get 1/fitness function |
||
| 70 | inv_fitness = np.zeros(len(fitness)) |
||
| 71 | |||
| 72 | # |
||
| 73 | for _idx in range(len(inv_fitness)): |
||
| 74 | |||
| 75 | if fitness[_idx] != 0.0: |
||
| 76 | inv_fitness[_idx] = 1.0 / fitness[_idx] |
||
| 77 | else: |
||
| 78 | inv_fitness[_idx] = 0.0 |
||
| 79 | |||
| 80 | # Initialize vector |
||
| 81 | prob = np.zeros(len(fitness)) |
||
| 82 | |||
| 83 | # Initialize first element |
||
| 84 | prob[0] = inv_fitness[0] |
||
| 85 | |||
| 86 | # Accumulate values in probability vector |
||
| 87 | for _idx in range(1, len(inv_fitness)): |
||
| 88 | prob[_idx] = prob[_idx - 1] + inv_fitness[_idx] |
||
| 89 | |||
| 90 | # Normalize |
||
| 91 | prob /= prob[-1] |
||
| 92 | |||
| 93 | GAMath.set_last_value_to_one(prob) |
||
| 94 | |||
| 95 | return prob |
||
| 96 | |||
| 97 | @staticmethod |
||
| 98 | def set_last_value_to_one(probabilities): |
||
| 99 | """! |
||
| 100 | @brief Update the last same probabilities to one. |
||
| 101 | @details All values of probability list equals to the last element are set to 1. |
||
| 102 | """ |
||
| 103 | |||
| 104 | # Start from the last elem |
||
| 105 | back_idx = - 1 |
||
| 106 | |||
| 107 | # All values equal to the last elem should be set to 1 |
||
| 108 | last_val = probabilities[back_idx] |
||
| 109 | |||
| 110 | # for all elements or if a elem not equal to the last elem |
||
| 111 | for _idx in range(-1, -len(probabilities) - 1): |
||
| 112 | if probabilities[back_idx] == last_val: |
||
| 113 | probabilities[back_idx] = 1 |
||
| 114 | else: |
||
| 115 | break |
||
| 116 | |||
| 117 | @staticmethod |
||
| 118 | def get_uniform(probabilities): |
||
| 119 | """! |
||
| 120 | @brief Returns index in probabilities. |
||
| 121 | |||
| 122 | @param[in] probabilities (list): List with segments in increasing sequence with val in [0, 1], |
||
| 123 | for example, [0 0.1 0.2 0.3 1.0]. |
||
| 124 | """ |
||
| 125 | |||
| 126 | # Initialize return value |
||
| 127 | res_idx = None |
||
| 128 | |||
| 129 | # Get random num in range [0, 1) |
||
| 130 | random_num = np.random.rand() |
||
| 131 | |||
| 132 | # Find segment with val1 < random_num < val2 |
||
| 133 | for _idx in range(len(probabilities)): |
||
| 134 | if random_num < probabilities[_idx]: |
||
| 135 | res_idx = _idx |
||
| 136 | break |
||
| 137 | |||
| 138 | if res_idx is None: |
||
| 139 | print('Probabilities : ', probabilities) |
||
| 140 | raise AttributeError("'probabilities' should contain 1 as the end of last segment(s)") |
||
| 141 | |||
| 142 | return res_idx |
||
| 143 | |||
| 144 |
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.pyfiles in your module folders. Make sure that you place one file in each sub-folder.