@@ 123-145 (lines=23) @@ | ||
120 | ||
121 | if not self._need_mean_ff: |
|
122 | return; |
|
123 | ||
124 | self._mean_ff_result.append(np.mean(fitness_functions)); |
|
125 | ||
126 | ||
127 | def get_global_best(self): |
|
128 | """! |
|
129 | @return (dict) Returns dictionary with keys 'chromosome' and 'fitness_function' where evolution of the best chromosome |
|
130 | and its fitness function's value (evolution of global optimum) are stored in lists. |
|
131 | ||
132 | """ |
|
133 | return self._global_best_result; |
|
134 | ||
135 | ||
136 | def get_population_best(self): |
|
137 | """! |
|
138 | @brief (dict) Returns dictionary with keys 'chromosome' and 'fitness_function' where evolution of the current best chromosome |
|
139 | and its fitness function's value (evolution of local optimum) are stored in lists. |
|
140 | ||
141 | """ |
|
142 | return self._best_population_result; |
|
143 | ||
144 | ||
145 | def get_mean_fitness_function(self): |
|
146 | """! |
|
147 | @brief (list) Returns fitness function's values on each iteration. |
|
148 | ||
@@ 147-168 (lines=22) @@ | ||
144 | ||
145 | def get_mean_fitness_function(self): |
|
146 | """! |
|
147 | @brief (list) Returns fitness function's values on each iteration. |
|
148 | ||
149 | """ |
|
150 | return self._mean_ff_result; |
|
151 | ||
152 | ||
153 | ||
154 | class ga_visualizer: |
|
155 | """! |
|
156 | @brief Genetic algorithm visualizer is used to show clustering results that are specific for |
|
157 | this particular algorithm: clusters, evolution of global and local optimum. |
|
158 | @details The visualizer requires 'ga_observer' that collects evolution of clustering process in |
|
159 | genetic algorithm. The observer is created by user and passed to genetic algorithm. There |
|
160 | is usage example of the visualizer using the observer: |
|
161 | @code |
|
162 | # Read data for clustering |
|
163 | sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1); |
|
164 | ||
165 | # Create instance of observer that will collect all information: |
|
166 | observer_instance = ga_observer(True, True, True); |
|
167 | ||
168 | # Create genetic algorithm where observer will collect information: |
|
169 | ga_instance = genetic_algorithm(data=sample, |
|
170 | count_clusters=2, |
|
171 | chromosome_count=20, |