@@ 677-680 (lines=4) @@ | ||
674 | active_state = False; |
|
675 | ||
676 | if (dynamic[time_stop_simulation][index_dyn] > threshold): |
|
677 | active_state = True; |
|
678 | ||
679 | # if active state is detected, it means we don't have whole oscillatory period for the considered oscillator, should be skipped. |
|
680 | if (active_state is True): |
|
681 | while ( (dynamic[time_stop_simulation][index_dyn] > threshold) and (time_stop_simulation > 0) ): |
|
682 | time_stop_simulation -= 1; |
|
683 | ||
@@ 656-659 (lines=4) @@ | ||
653 | @brief Allocate clusters in line with ensembles of synchronous oscillators where each |
|
654 | synchronous ensemble corresponds to only one cluster. |
|
655 | ||
656 | @param[in] dynamic (dynamic): Dynamic of each oscillator. |
|
657 | @param[in] tolerance (double): Maximum error for allocation of synchronous ensemble oscillators. |
|
658 | @param[in] threshold (double): Amlitude trigger when spike is taken into account. |
|
659 | @param[in] ignore (bool): Set of indexes that shouldn't be taken into account. |
|
660 | ||
661 | @return (list) Grours (lists) of indexes of synchronous oscillators, for example, |
|
662 | [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ]. |
|
@@ 812-816 (lines=5) @@ | ||
809 | axes.scatter(item[0], item[1], item[2], c = color, marker = marker_descr); |
|
810 | else: |
|
811 | axes.scatter(data[item][0], data[item][1], data[item][2], c = color, marker = marker_descr); |
|
812 | ||
813 | color_index += 1; |
|
814 | ||
815 | for item in noise: |
|
816 | if (dimension == 1): |
|
817 | if (data is None): |
|
818 | axes.plot(item[0], 0.0, 'w' + marker_descr); |
|
819 | else: |
|
@@ 791-795 (lines=5) @@ | ||
788 | else: |
|
789 | raise NameError('Drawer supports only 2d and 3d data representation'); |
|
790 | ||
791 | color_index = 0; |
|
792 | for cluster in clusters: |
|
793 | color = colors[color_index]; |
|
794 | for item in cluster: |
|
795 | if (dimension == 1): |
|
796 | if (data is None): |
|
797 | axes.plot(item[0], 0.0, color = color, marker = marker_descr); |
|
798 | else: |
@@ 330-333 (lines=4) @@ | ||
327 | ax.plot(data[item][0], 0.0, color = color, marker = marker, markersize = markersize); |
|
328 | ||
329 | elif (dimension == 2): |
|
330 | if (data is None): |
|
331 | ax.plot(item[0], item[1], color = color, marker = marker, markersize = markersize); |
|
332 | else: |
|
333 | ax.plot(data[item][0], data[item][1], color = color, marker = marker, markersize = markersize); |
|
334 | ||
335 | elif (dimension == 3): |
|
336 | if (data is None): |
|
@@ 323-327 (lines=5) @@ | ||
320 | color = cluster_descr.color; |
|
321 | ||
322 | for item in cluster: |
|
323 | if (dimension == 1): |
|
324 | if (data is None): |
|
325 | ax.plot(item[0], 0.0, color = color, marker = marker, markersize = markersize); |
|
326 | else: |
|
327 | ax.plot(data[item][0], 0.0, color = color, marker = marker, markersize = markersize); |
|
328 | ||
329 | elif (dimension == 2): |
|
330 | if (data is None): |