| @@ 129-155 (lines=27) @@ | ||
| 126 | @see get_clusters() |
|
| 127 | ||
| 128 | """ |
|
| 129 | ||
| 130 | return self.__medians; |
|
| 131 | ||
| 132 | ||
| 133 | def get_cluster_encoding(self): |
|
| 134 | """! |
|
| 135 | @brief Returns clustering result representation type that indicate how clusters are encoded. |
|
| 136 | ||
| 137 | @return (type_encoding) Clustering result representation. |
|
| 138 | ||
| 139 | @see get_clusters() |
|
| 140 | ||
| 141 | """ |
|
| 142 | ||
| 143 | return type_encoding.CLUSTER_INDEX_LIST_SEPARATION; |
|
| 144 | ||
| 145 | ||
| 146 | def __update_clusters(self): |
|
| 147 | """! |
|
| 148 | @brief Calculate Manhattan distance to each point from the each cluster. |
|
| 149 | @details Nearest points are captured by according clusters and as a result clusters are updated. |
|
| 150 | ||
| 151 | @return (list) updated clusters as list of clusters where each cluster contains indexes of objects from data. |
|
| 152 | ||
| 153 | """ |
|
| 154 | ||
| 155 | clusters = [[] for i in range(len(self.__medians))]; |
|
| 156 | for index_point in range(len(self.__pointer_data)): |
|
| 157 | index_optim = -1; |
|
| 158 | dist_optim = 0.0; |
|
| @@ 361-394 (lines=34) @@ | ||
| 358 | ||
| 359 | scores = [0.0] * len(clusters) # splitting criterion |
|
| 360 | dimension = len(self.__pointer_data[0]); |
|
| 361 | ||
| 362 | # estimation of the noise variance in the data set |
|
| 363 | sigma = 0.0; |
|
| 364 | K = len(clusters); |
|
| 365 | N = 0.0; |
|
| 366 | ||
| 367 | for index_cluster in range(0, len(clusters), 1): |
|
| 368 | for index_object in clusters[index_cluster]: |
|
| 369 | sigma += (euclidean_distance(self.__pointer_data[index_object], centers[index_cluster])); # It works |
|
| 370 | ||
| 371 | N += len(clusters[index_cluster]); |
|
| 372 | ||
| 373 | if (N - K != 0): |
|
| 374 | sigma /= (N - K); |
|
| 375 | ||
| 376 | # splitting criterion |
|
| 377 | for index_cluster in range(0, len(clusters), 1): |
|
| 378 | n = len(clusters[index_cluster]); |
|
| 379 | ||
| 380 | if (sigma > 0.0): |
|
| 381 | scores[index_cluster] = n * math.log(n) - n * math.log(N) - n * math.log(2.0 * numpy.pi) / 2.0 - n * dimension * math.log(sigma) / 2.0 - (n - K) / 2.0; |
|
| 382 | ||
| 383 | return sum(scores); |
|
| 384 | ||
| 385 | ||
| 386 | def __update_clusters(self, centers, available_indexes = None): |
|
| 387 | """! |
|
| 388 | @brief Calculates Euclidean distance to each point from the each cluster. |
|
| 389 | Nearest points are captured by according clusters and as a result clusters are updated. |
|
| 390 | ||
| 391 | @param[in] centers (list): Coordinates of centers of clusters that are represented by list: [center1, center2, ...]. |
|
| 392 | @param[in] available_indexes (list): Indexes that defines which points can be used from imput data, if None - then all points are used. |
|
| 393 | ||
| 394 | @return (list) Updated clusters. |
|
| 395 | ||
| 396 | """ |
|
| 397 | ||
| @@ 126-152 (lines=27) @@ | ||
| 123 | @see get_clusters() |
|
| 124 | ||
| 125 | """ |
|
| 126 | ||
| 127 | return self.__centers; |
|
| 128 | ||
| 129 | ||
| 130 | def get_cluster_encoding(self): |
|
| 131 | """! |
|
| 132 | @brief Returns clustering result representation type that indicate how clusters are encoded. |
|
| 133 | ||
| 134 | @return (type_encoding) Clustering result representation. |
|
| 135 | ||
| 136 | @see get_clusters() |
|
| 137 | ||
| 138 | """ |
|
| 139 | ||
| 140 | return type_encoding.CLUSTER_INDEX_LIST_SEPARATION; |
|
| 141 | ||
| 142 | ||
| 143 | def __update_clusters(self): |
|
| 144 | """! |
|
| 145 | @brief Calculate Euclidean distance to each point from the each cluster. Nearest points are captured by according clusters and as a result clusters are updated. |
|
| 146 | ||
| 147 | @return (list) updated clusters as list of clusters. Each cluster contains indexes of objects from data. |
|
| 148 | ||
| 149 | """ |
|
| 150 | ||
| 151 | clusters = [[] for i in range(len(self.__centers))]; |
|
| 152 | for index_point in range(len(self.__pointer_data)): |
|
| 153 | index_optim = -1; |
|
| 154 | dist_optim = 0.0; |
|
| 155 | ||
| @@ 123-149 (lines=27) @@ | ||
| 120 | ||
| 121 | def get_medoids(self): |
|
| 122 | """! |
|
| 123 | @brief Returns list of medoids of allocated clusters. |
|
| 124 | ||
| 125 | @see process() |
|
| 126 | @see get_clusters() |
|
| 127 | ||
| 128 | """ |
|
| 129 | ||
| 130 | return self.__medoids; |
|
| 131 | ||
| 132 | ||
| 133 | def get_cluster_encoding(self): |
|
| 134 | """! |
|
| 135 | @brief Returns clustering result representation type that indicate how clusters are encoded. |
|
| 136 | ||
| 137 | @return (type_encoding) Clustering result representation. |
|
| 138 | ||
| 139 | @see get_clusters() |
|
| 140 | ||
| 141 | """ |
|
| 142 | ||
| 143 | return type_encoding.CLUSTER_INDEX_LIST_SEPARATION; |
|
| 144 | ||
| 145 | ||
| 146 | def __update_clusters(self): |
|
| 147 | """! |
|
| 148 | @brief Calculate distance to each point from the each cluster. |
|
| 149 | @details Nearest points are captured by according clusters and as a result clusters are updated. |
|
| 150 | ||
| 151 | @return (list) updated clusters as list of clusters where each cluster contains indexes of objects from data. |
|
| 152 | ||