|
1
|
|
|
/** |
|
2
|
|
|
fusion |
|
3
|
|
|
Component that handles the fusion of isotopes to create new ones. |
|
4
|
|
|
|
|
5
|
|
|
@namespace Components |
|
6
|
|
|
*/ |
|
7
|
|
|
'use strict'; |
|
8
|
|
|
|
|
9
|
|
|
angular.module('game').component('fusion', { |
|
10
|
|
|
templateUrl: 'views/fusion.html', |
|
11
|
|
|
controller: 'ct_fusion', |
|
12
|
|
|
controllerAs: 'ct' |
|
13
|
|
|
}); |
|
14
|
|
|
|
|
15
|
|
|
angular.module('game').controller('ct_fusion', ['state', 'format', 'visibility', 'data', 'util', |
|
16
|
|
|
function (state, format, visibility, data, util) { |
|
17
|
|
|
let ct = this; |
|
18
|
|
|
ct.state = state; |
|
19
|
|
|
ct.data = data; |
|
20
|
|
|
ct.util = util; |
|
21
|
|
|
ct.format = format; |
|
22
|
|
|
|
|
23
|
|
|
ct.getReactorArea = function(player) { |
|
24
|
|
|
let level = player.global_upgrades.fusion_area; |
|
25
|
|
|
let upgrade = data.global_upgrades.fusion_area; |
|
26
|
|
|
let basePower = upgrade.power; |
|
27
|
|
|
let multiplier = upgrade.power_mult; |
|
28
|
|
|
return basePower * Math.floor(multiplier * level); |
|
29
|
|
|
}; |
|
30
|
|
|
|
|
31
|
|
|
ct.getBandwidth = function(player){ |
|
32
|
|
|
let level = player.global_upgrades.fusion_bandwidth; |
|
33
|
|
|
let upgrade = data.global_upgrades.fusion_bandwidth; |
|
34
|
|
|
let basePower = upgrade.power; |
|
35
|
|
|
let exp = upgrade.power_exp; |
|
36
|
|
|
return basePower * Math.pow(exp, level); |
|
37
|
|
|
} |
|
38
|
|
|
|
|
39
|
|
|
function getRadius(resource) { |
|
40
|
|
|
let isotope = data.resources[resource]; |
|
41
|
|
|
let A = isotope.energy/data.constants.U_TO_EV; |
|
42
|
|
|
return data.constants.FERMI_RADIUS * Math.pow(A, 0.3333); |
|
43
|
|
|
} |
|
44
|
|
|
|
|
45
|
|
|
function getZ(resource){ |
|
46
|
|
|
let isotope = data.resources[resource]; |
|
47
|
|
|
let element = Object.keys(isotope.elements)[0]; |
|
48
|
|
|
return data.elements[element].number; |
|
49
|
|
|
} |
|
50
|
|
|
|
|
51
|
|
|
ct.getCapacity = function(resource, player) { |
|
52
|
|
|
let r = getRadius(resource); |
|
53
|
|
|
let area = Math.PI*r*r; |
|
54
|
|
|
return ct.getReactorArea(player)/area; |
|
55
|
|
|
}; |
|
56
|
|
|
|
|
57
|
|
|
ct.getProductIsotope = function(beam, target) { |
|
58
|
|
|
if(!beam || !target) { |
|
59
|
|
|
return false; |
|
60
|
|
|
} |
|
61
|
|
|
|
|
62
|
|
|
let beamN = parseInt(beam, 10); |
|
63
|
|
|
let targetN = parseInt(target, 10); |
|
64
|
|
|
|
|
65
|
|
|
let beamZ = getZ(beam); |
|
66
|
|
|
let targetZ = getZ(target); |
|
67
|
|
|
|
|
68
|
|
|
let productN = beamN+targetN; |
|
69
|
|
|
let productZ = beamZ+targetZ; |
|
70
|
|
|
|
|
71
|
|
|
return data.resource_matrix[productZ][productN]; |
|
72
|
|
|
}; |
|
73
|
|
|
|
|
74
|
|
|
ct.getProductEnergy = function(beam, target) { |
|
75
|
|
|
let product = ct.getProductIsotope(beam, target); |
|
76
|
|
|
if(!product){ |
|
77
|
|
|
return 0; |
|
78
|
|
|
} |
|
79
|
|
|
let beamBE = data.resources[beam].binding_energy; |
|
80
|
|
|
let targetBE = data.resources[target].binding_energy; |
|
81
|
|
|
let productBE = data.resources[product].binding_energy; |
|
82
|
|
|
|
|
83
|
|
|
return productBE - (beamBE + targetBE); |
|
84
|
|
|
}; |
|
85
|
|
|
|
|
86
|
|
|
ct.getCoulombBarrier = function(beam, target) { |
|
87
|
|
|
let beamZ = getZ(beam); |
|
88
|
|
|
let beamR = getRadius(beam); |
|
89
|
|
|
|
|
90
|
|
|
let targetZ = getZ(target); |
|
91
|
|
|
let targetR = getRadius(target); |
|
92
|
|
|
|
|
93
|
|
|
let coulombBarrier = data.constants.COULOMB_CONSTANT*beamZ*targetZ* |
|
94
|
|
|
Math.pow(data.constants.ELECTRON_CHARGE, 2)/(beamR+targetR); |
|
95
|
|
|
return coulombBarrier * data.constants.JOULE_TO_EV; |
|
96
|
|
|
}; |
|
97
|
|
|
|
|
98
|
|
|
ct.getYieldPercent = function(beam, target, player) { |
|
99
|
|
|
let beamR = getRadius(beam); |
|
100
|
|
|
let targetR = getRadius(target); |
|
101
|
|
|
let beamArea = Math.PI*beamR*beamR; |
|
102
|
|
|
let targetArea = Math.PI*targetR*targetR; |
|
103
|
|
|
|
|
104
|
|
|
let beamPercentArea = beamArea*ct.state.beam.number/ct.getReactorArea(player); |
|
105
|
|
|
let targetPercentArea = targetArea*ct.state.target.number/ct.getReactorArea(player); |
|
106
|
|
|
|
|
107
|
|
|
return beamPercentArea*targetPercentArea; |
|
108
|
|
|
}; |
|
109
|
|
|
|
|
110
|
|
|
ct.getYield = function(beam, target, player){ |
|
111
|
|
|
let percentYield = ct.getYieldPercent(beam, target, player); |
|
112
|
|
|
return Math.floor(percentYield*ct.state.target.number); |
|
113
|
|
|
}; |
|
114
|
|
|
|
|
115
|
|
|
ct.getFusionReaction = function(player) { |
|
116
|
|
|
let reaction = { |
|
117
|
|
|
reactant: {}, |
|
118
|
|
|
product: {} |
|
119
|
|
|
}; |
|
120
|
|
|
|
|
121
|
|
|
let beam = ct.state.beam.name; |
|
122
|
|
|
let target = ct.state.target.name; |
|
123
|
|
|
|
|
124
|
|
|
reaction.reactant[beam] = ct.state.beam.number; |
|
125
|
|
|
reaction.reactant[target] = ct.state.target.number; |
|
126
|
|
|
|
|
127
|
|
|
let coulombBarrier = ct.getCoulombBarrier(beam, target); |
|
128
|
|
|
reaction.reactant.eV = coulombBarrier*ct.state.beam.number; |
|
129
|
|
|
|
|
130
|
|
|
let product = ct.getProductIsotope(beam, target); |
|
131
|
|
|
let numberYield = ct.getYield(beam, target, player); |
|
132
|
|
|
|
|
133
|
|
|
reaction.product[product] = numberYield; |
|
134
|
|
|
|
|
135
|
|
|
let energyExchange = ct.getProductEnergy(beam, target); |
|
136
|
|
|
if(energyExchange < 0){ |
|
137
|
|
|
reaction.reactant.eV += energyExchange*numberYield; |
|
138
|
|
|
}else if(energyExchange > 0){ |
|
139
|
|
|
reaction.product.eV = energyExchange*numberYield; |
|
140
|
|
|
} |
|
141
|
|
|
|
|
142
|
|
|
return reaction; |
|
143
|
|
|
}; |
|
144
|
|
|
|
|
145
|
|
|
function update(player){ |
|
|
|
|
|
|
146
|
|
|
let source1 = '2H'; |
|
147
|
|
|
let source2 = '2H'; |
|
148
|
|
|
|
|
149
|
|
|
let coulombBarrier = ct.getCoulombBarrier(source1, source2); |
|
150
|
|
|
|
|
151
|
|
|
let quantity1 = ct.state.beam.number; |
|
152
|
|
|
let quantity2 = ct.state.target.number; |
|
|
|
|
|
|
153
|
|
|
|
|
154
|
|
|
let numberYield = ct.getYield(source1, source2, player); |
|
155
|
|
|
|
|
156
|
|
|
let totalCoulomb = coulombBarrier*quantity1; |
|
157
|
|
|
|
|
158
|
|
|
let product = ct.getProductIsotope(source1, source2); |
|
159
|
|
|
|
|
160
|
|
|
// console.log(product); |
|
161
|
|
|
// console.log("capacity "+capacity1); |
|
162
|
|
|
// console.log("coulomb "+totalCoulomb); |
|
163
|
|
|
// console.log("yield "+percentYield+" "+numberYield); |
|
164
|
|
|
if(!product) return; |
|
|
|
|
|
|
165
|
|
|
|
|
166
|
|
|
let energyExchange = ct.getProductEnergy(source1, source2); |
|
167
|
|
|
// console.log(energyExchange); |
|
168
|
|
|
if(energyExchange < 0){ |
|
169
|
|
|
totalCoulomb += energyExchange*numberYield; |
|
|
|
|
|
|
170
|
|
|
}else{ |
|
171
|
|
|
// console.log("produced energy "+energyExchange*numberYield); |
|
172
|
|
|
} |
|
173
|
|
|
} |
|
174
|
|
|
} |
|
175
|
|
|
]); |
|
176
|
|
|
|