|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
""" |
|
5
|
|
|
An abstract model class for The Cannon. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
from __future__ import (division, print_function, absolute_import, |
|
9
|
|
|
unicode_literals) |
|
10
|
|
|
|
|
11
|
|
|
__all__ = [ |
|
12
|
|
|
"BaseCannonModel", "requires_training_wheels", "requires_model_description"] |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
import logging |
|
16
|
|
|
import numpy as np |
|
17
|
|
|
import multiprocessing as mp |
|
18
|
|
|
from collections import OrderedDict |
|
19
|
|
|
from datetime import datetime |
|
20
|
|
|
from os import path |
|
21
|
|
|
from six.moves import cPickle as pickle |
|
22
|
|
|
|
|
23
|
|
|
from . import (utils, __version__ as code_version) |
|
24
|
|
|
|
|
25
|
|
|
logger = logging.getLogger(__name__) |
|
26
|
|
|
|
|
27
|
|
|
|
|
28
|
|
|
def requires_training_wheels(method): |
|
29
|
|
|
""" |
|
30
|
|
|
A decorator for model methods that require training before being run. |
|
31
|
|
|
""" |
|
32
|
|
|
|
|
33
|
|
|
def wrapper(model, *args, **kwargs): |
|
34
|
|
|
if not model.is_trained: |
|
35
|
|
|
raise TypeError("the model needs training first") |
|
36
|
|
|
return method(model, *args, **kwargs) |
|
37
|
|
|
return wrapper |
|
38
|
|
|
|
|
39
|
|
|
|
|
40
|
|
|
def requires_model_description(method): |
|
41
|
|
|
""" |
|
42
|
|
|
A decorator for model methods that require a full model description. |
|
43
|
|
|
(That is, none of the _descriptive_attributes are None) |
|
44
|
|
|
""" |
|
45
|
|
|
|
|
46
|
|
|
def wrapper(model, *args, **kwargs): |
|
47
|
|
|
for descriptive_attribute in model._descriptive_attributes: |
|
48
|
|
|
if getattr(model, descriptive_attribute) is None: |
|
49
|
|
|
raise TypeError("the model requires a {} term".format( |
|
50
|
|
|
descriptive_attribute.lstrip("_"))) |
|
51
|
|
|
return method(model, *args, **kwargs) |
|
52
|
|
|
return wrapper |
|
53
|
|
|
|
|
54
|
|
|
|
|
55
|
|
|
class BaseCannonModel(object): |
|
56
|
|
|
""" |
|
57
|
|
|
An abstract Cannon model object that implements convenience functions. |
|
58
|
|
|
|
|
59
|
|
|
:param labels: |
|
60
|
|
|
A table with columns as labels, and stars as rows. |
|
61
|
|
|
|
|
62
|
|
|
:type labels: |
|
63
|
|
|
:class:`~astropy.table.Table` or numpy structured array |
|
64
|
|
|
|
|
65
|
|
|
:param fluxes: |
|
66
|
|
|
An array of fluxes for stars in the training set, given as shape |
|
67
|
|
|
`(num_stars, num_pixels)`. The `num_stars` should match the number of |
|
68
|
|
|
rows in `labels`. |
|
69
|
|
|
|
|
70
|
|
|
:type fluxes: |
|
71
|
|
|
:class:`np.ndarray` |
|
72
|
|
|
|
|
73
|
|
|
:param flux_uncertainties: |
|
74
|
|
|
An array of 1-sigma flux uncertainties for stars in the training set, |
|
75
|
|
|
The shape of the `flux_uncertainties` should match `fluxes`. |
|
76
|
|
|
|
|
77
|
|
|
:type flux_uncertainties: |
|
78
|
|
|
:class:`np.ndarray` |
|
79
|
|
|
|
|
80
|
|
|
:param dispersion: [optional] |
|
81
|
|
|
The dispersion values corresponding to the given pixels. If provided, |
|
82
|
|
|
this should have length `num_pixels`. |
|
83
|
|
|
|
|
84
|
|
|
:param live_dangerously: [optional] |
|
85
|
|
|
If enabled then no checks will be made on the label names, prohibiting |
|
86
|
|
|
the user to input human-readable forms of the label vector. |
|
87
|
|
|
""" |
|
88
|
|
|
|
|
89
|
|
|
_descriptive_attributes = ["_label_vector"] |
|
90
|
|
|
_trained_attributes = ["_scatter", "_coefficients", "_pivots"] |
|
91
|
|
|
_data_attributes = [] |
|
92
|
|
|
_forbidden_label_characters = "^*" |
|
93
|
|
|
|
|
94
|
|
|
def __init__(self, labels, fluxes, flux_uncertainties, dispersion=None, |
|
95
|
|
|
threads=1, pool=None, live_dangerously=False): |
|
96
|
|
|
|
|
97
|
|
|
self._training_labels = labels |
|
98
|
|
|
self._training_fluxes = np.atleast_2d(fluxes) |
|
99
|
|
|
self._training_flux_uncertainties = np.atleast_2d(flux_uncertainties) |
|
100
|
|
|
self._dispersion = np.arange(fluxes.shape[1], dtype=int) \ |
|
101
|
|
|
if dispersion is None else dispersion |
|
102
|
|
|
|
|
103
|
|
|
for attribute in self._descriptive_attributes: |
|
104
|
|
|
setattr(self, attribute, None) |
|
105
|
|
|
|
|
106
|
|
|
# The training data must be checked, but users can live dangerously if |
|
107
|
|
|
# they think they can correctly specify the label vector description. |
|
108
|
|
|
self._verify_training_data() |
|
109
|
|
|
if not live_dangerously: |
|
110
|
|
|
self._verify_labels_available() |
|
111
|
|
|
|
|
112
|
|
|
self.reset() |
|
113
|
|
|
self.threads = threads |
|
114
|
|
|
self.pool = pool or mp.Pool(threads) if threads > 1 else None |
|
115
|
|
|
|
|
116
|
|
|
|
|
117
|
|
|
def reset(self): |
|
118
|
|
|
""" |
|
119
|
|
|
Clear any attributes that have been trained upon. |
|
120
|
|
|
""" |
|
121
|
|
|
|
|
122
|
|
|
self._trained = False |
|
123
|
|
|
for attribute in self._trained_attributes: |
|
124
|
|
|
setattr(self, attribute, None) |
|
125
|
|
|
|
|
126
|
|
|
return None |
|
127
|
|
|
|
|
128
|
|
|
|
|
129
|
|
|
def __str__(self): |
|
130
|
|
|
return "<{module}.{name} {trained}using a training set of {N} stars "\ |
|
131
|
|
|
"with {K} available labels and {M} pixels each>".format( |
|
132
|
|
|
module=self.__module__, |
|
133
|
|
|
name=type(self).__name__, |
|
134
|
|
|
trained="trained " if self.is_trained else "", |
|
135
|
|
|
N=len(self.training_labels), |
|
136
|
|
|
K=len(self.labels_available), |
|
137
|
|
|
M=len(self.dispersion)) |
|
138
|
|
|
|
|
139
|
|
|
|
|
140
|
|
|
def __repr__(self): |
|
141
|
|
|
return "<{0}.{1} object at {2}>".format( |
|
142
|
|
|
self.__module__, type(self).__name__, hex(id(self))) |
|
143
|
|
|
|
|
144
|
|
|
|
|
145
|
|
|
# Attributes related to the training data. |
|
146
|
|
|
@property |
|
147
|
|
|
def dispersion(self): |
|
148
|
|
|
""" |
|
149
|
|
|
Return the dispersion points for all pixels. |
|
150
|
|
|
""" |
|
151
|
|
|
return self._dispersion |
|
152
|
|
|
|
|
153
|
|
|
|
|
154
|
|
|
@dispersion.setter |
|
155
|
|
|
def dispersion(self, dispersion): |
|
156
|
|
|
""" |
|
157
|
|
|
Set the dispersion values for all the pixels. |
|
158
|
|
|
""" |
|
159
|
|
|
try: |
|
160
|
|
|
len(dispersion) |
|
161
|
|
|
except TypeError: |
|
162
|
|
|
raise TypeError("dispersion provided must be an array or list-like") |
|
163
|
|
|
|
|
164
|
|
|
if len(dispersion) != self.training_fluxes.shape[1]: |
|
165
|
|
|
raise ValueError("dispersion provided does not match the number " |
|
166
|
|
|
"of pixels per star ({0} != {1})".format( |
|
167
|
|
|
len(dispersion), self.training_fluxes.shape[1])) |
|
168
|
|
|
|
|
169
|
|
|
dispersion = np.array(dispersion) |
|
170
|
|
|
if dispersion.dtype.kind not in "iuf": |
|
171
|
|
|
raise ValueError("dispersion values are not float-like") |
|
172
|
|
|
|
|
173
|
|
|
if not np.all(np.isfinite(dispersion)): |
|
174
|
|
|
raise ValueError("dispersion values must be finite") |
|
175
|
|
|
|
|
176
|
|
|
self._dispersion = dispersion |
|
177
|
|
|
return None |
|
178
|
|
|
|
|
179
|
|
|
|
|
180
|
|
|
@property |
|
181
|
|
|
def training_labels(self): |
|
182
|
|
|
return self._training_labels |
|
183
|
|
|
|
|
184
|
|
|
|
|
185
|
|
|
@property |
|
186
|
|
|
def training_fluxes(self): |
|
187
|
|
|
return self._training_fluxes |
|
188
|
|
|
|
|
189
|
|
|
|
|
190
|
|
|
@property |
|
191
|
|
|
def training_flux_uncertainties(self): |
|
192
|
|
|
return self._training_flux_uncertainties |
|
193
|
|
|
|
|
194
|
|
|
|
|
195
|
|
|
# Verifying the training data. |
|
196
|
|
|
def _verify_labels_available(self): |
|
197
|
|
|
""" |
|
198
|
|
|
Verify the label names provided do not include forbidden characters. |
|
199
|
|
|
""" |
|
200
|
|
|
if self._forbidden_label_characters is None: |
|
201
|
|
|
return True |
|
202
|
|
|
|
|
203
|
|
|
for label in self.training_labels.dtype.names: |
|
204
|
|
|
for character in self._forbidden_label_characters: |
|
205
|
|
|
if character in label: |
|
206
|
|
|
raise ValueError( |
|
207
|
|
|
"forbidden character '{char}' is in potential " |
|
208
|
|
|
"label '{label}' - you can disable this verification " |
|
209
|
|
|
"by enabling `live_dangerously`".format( |
|
210
|
|
|
char=character, label=label)) |
|
211
|
|
|
return None |
|
212
|
|
|
|
|
213
|
|
|
|
|
214
|
|
|
def _verify_training_data(self): |
|
215
|
|
|
""" |
|
216
|
|
|
Verify the training data for the appropriate shape and content. |
|
217
|
|
|
""" |
|
218
|
|
|
if self.training_fluxes.shape != self.training_flux_uncertainties.shape: |
|
219
|
|
|
raise ValueError( |
|
220
|
|
|
"the training flux and uncertainty arrays should " |
|
221
|
|
|
"have the same shape") |
|
222
|
|
|
|
|
223
|
|
|
if len(self.training_labels) == 0 \ |
|
224
|
|
|
or self.training_labels.dtype.names is None: |
|
225
|
|
|
raise ValueError("no named labels provided for the training set") |
|
226
|
|
|
|
|
227
|
|
|
if len(self.training_labels) != self.training_fluxes.shape[0]: |
|
228
|
|
|
raise ValueError( |
|
229
|
|
|
"the first axes of the training flux array should " |
|
230
|
|
|
"have the same shape as the nuber of rows in the label table " |
|
231
|
|
|
"(N_stars, N_pixels)") |
|
232
|
|
|
|
|
233
|
|
|
if self.dispersion is not None: |
|
234
|
|
|
dispersion = np.atleast_1d(self.dispersion).flatten() |
|
235
|
|
|
if dispersion.size != self.training_fluxes.shape[1]: |
|
236
|
|
|
raise ValueError( |
|
237
|
|
|
"mis-match between the number of wavelength " |
|
238
|
|
|
"points ({0}) and flux values ({1})".format( |
|
239
|
|
|
self.training_fluxes.shape[1], dispersion.size)) |
|
240
|
|
|
return None |
|
241
|
|
|
|
|
242
|
|
|
|
|
243
|
|
|
@property |
|
244
|
|
|
def is_trained(self): |
|
245
|
|
|
return self._trained |
|
246
|
|
|
|
|
247
|
|
|
|
|
248
|
|
|
# Attributes related to the labels and the label vector description. |
|
249
|
|
|
@property |
|
250
|
|
|
def labels_available(self): |
|
251
|
|
|
""" |
|
252
|
|
|
All of the available labels for each star in the training set. |
|
253
|
|
|
""" |
|
254
|
|
|
return self.training_labels.dtype.names |
|
255
|
|
|
|
|
256
|
|
|
|
|
257
|
|
|
@property |
|
258
|
|
|
def label_vector(self): |
|
259
|
|
|
""" The label vector for all pixels. """ |
|
260
|
|
|
return self._label_vector |
|
261
|
|
|
|
|
262
|
|
|
|
|
263
|
|
|
@label_vector.setter |
|
264
|
|
|
def label_vector(self, label_vector_description): |
|
265
|
|
|
""" |
|
266
|
|
|
Set a label vector. |
|
267
|
|
|
|
|
268
|
|
|
:param label_vector_description: |
|
269
|
|
|
A structured or human-readable version of the label vector |
|
270
|
|
|
description. |
|
271
|
|
|
""" |
|
272
|
|
|
|
|
273
|
|
|
if label_vector_description is None: |
|
274
|
|
|
self._label_vector = None |
|
275
|
|
|
self.reset() |
|
276
|
|
|
return None |
|
277
|
|
|
|
|
278
|
|
|
label_vector = utils.parse_label_vector(label_vector_description) |
|
279
|
|
|
|
|
280
|
|
|
# Need to actually verify that the parameters listed in the label vector |
|
281
|
|
|
# are actually present in the training labels. |
|
282
|
|
|
missing = \ |
|
283
|
|
|
set(self._get_labels(label_vector)).difference(self.labels_available) |
|
284
|
|
|
if missing: |
|
285
|
|
|
raise ValueError("the following labels parsed from the label " |
|
286
|
|
|
"vector description are missing in the training " |
|
287
|
|
|
"set of labels: {0}".format(", ".join(missing))) |
|
288
|
|
|
|
|
289
|
|
|
# If this is really a new label vector description, |
|
290
|
|
|
# then we are no longer trained. |
|
291
|
|
|
if not hasattr(self, "_label_vector") \ |
|
292
|
|
|
or label_vector != self._label_vector: |
|
293
|
|
|
self._label_vector = label_vector |
|
294
|
|
|
self.reset() |
|
295
|
|
|
|
|
296
|
|
|
self.pivots = \ |
|
297
|
|
|
np.array([np.nanmean(self.training_labels[l]) for l in self.labels]) |
|
298
|
|
|
|
|
299
|
|
|
return None |
|
300
|
|
|
|
|
301
|
|
|
|
|
302
|
|
|
@property |
|
303
|
|
|
def human_readable_label_vector(self): |
|
304
|
|
|
""" Return a human-readable form of the label vector. """ |
|
305
|
|
|
return utils.human_readable_label_vector(self.label_vector) |
|
306
|
|
|
|
|
307
|
|
|
|
|
308
|
|
|
@property |
|
309
|
|
|
def labels(self): |
|
310
|
|
|
""" The labels that contribute to the label vector. """ |
|
311
|
|
|
return self._get_labels(self.label_vector) |
|
312
|
|
|
|
|
313
|
|
|
|
|
314
|
|
|
def _get_labels(self, label_vector): |
|
315
|
|
|
""" |
|
316
|
|
|
Return the labels that contribute to the structured label vector |
|
317
|
|
|
provided. |
|
318
|
|
|
""" |
|
319
|
|
|
return () if label_vector is None else \ |
|
320
|
|
|
list(OrderedDict.fromkeys([label for term in label_vector \ |
|
321
|
|
|
for label, power in term if power != 0])) |
|
322
|
|
|
|
|
323
|
|
|
|
|
324
|
|
|
def _get_lowest_order_label_indices(self): |
|
325
|
|
|
""" |
|
326
|
|
|
Get the indices for the lowest power label terms in the label vector. |
|
327
|
|
|
""" |
|
328
|
|
|
indices = OrderedDict() |
|
329
|
|
|
for i, term in enumerate(self.label_vector): |
|
330
|
|
|
if len(term) > 1: continue |
|
331
|
|
|
label, order = term[0] |
|
332
|
|
|
if order < indices.get(label, [None, np.inf])[-1]: |
|
333
|
|
|
indices[label] = (i, order) |
|
334
|
|
|
return [indices.get(label, [None])[0] for label in self.labels] |
|
335
|
|
|
|
|
336
|
|
|
|
|
337
|
|
|
# Trained attributes that subclasses are likely to use. |
|
338
|
|
|
@property |
|
339
|
|
|
def coefficients(self): |
|
340
|
|
|
return self._coefficients |
|
341
|
|
|
|
|
342
|
|
|
|
|
343
|
|
|
@coefficients.setter |
|
344
|
|
|
def coefficients(self, coefficients): |
|
345
|
|
|
""" |
|
346
|
|
|
Set the label vector coefficients for each pixel. This assumes a |
|
347
|
|
|
'standard' model where the label vector is common to all pixels. |
|
348
|
|
|
|
|
349
|
|
|
:param coefficients: |
|
350
|
|
|
A 2-D array of coefficients of shape |
|
351
|
|
|
(`N_pixels`, `N_label_vector_terms`). |
|
352
|
|
|
""" |
|
353
|
|
|
|
|
354
|
|
|
if coefficients is None: |
|
355
|
|
|
self._coefficients = None |
|
356
|
|
|
return None |
|
357
|
|
|
|
|
358
|
|
|
coefficients = np.atleast_2d(coefficients) |
|
359
|
|
|
if len(coefficients.shape) > 2: |
|
360
|
|
|
raise ValueError("coefficients must be a 2D array") |
|
361
|
|
|
|
|
362
|
|
|
P, Q = coefficients.shape |
|
363
|
|
|
if P != len(self.dispersion): |
|
364
|
|
|
raise ValueError("axis 0 of coefficients array does not match the " |
|
365
|
|
|
"number of pixels ({0} != {1})".format( |
|
366
|
|
|
P, len(self.dispersion))) |
|
367
|
|
|
if Q != 1 + len(self.label_vector): |
|
368
|
|
|
raise ValueError("axis 1 of coefficients array does not match the " |
|
369
|
|
|
"number of label vector terms ({0} != {1})".format( |
|
370
|
|
|
Q, 1 + len(self.label_vector))) |
|
371
|
|
|
self._coefficients = coefficients |
|
372
|
|
|
return None |
|
373
|
|
|
|
|
374
|
|
|
|
|
375
|
|
|
@property |
|
376
|
|
|
def scatter(self): |
|
377
|
|
|
return self._scatter |
|
378
|
|
|
|
|
379
|
|
|
|
|
380
|
|
|
@scatter.setter |
|
381
|
|
|
def scatter(self, scatter): |
|
382
|
|
|
""" |
|
383
|
|
|
Set the scatter values for each pixel. |
|
384
|
|
|
|
|
385
|
|
|
:param scatter: |
|
386
|
|
|
A 1-D array of scatter terms. |
|
387
|
|
|
""" |
|
388
|
|
|
|
|
389
|
|
|
if scatter is None: |
|
390
|
|
|
self._scatter = None |
|
391
|
|
|
return None |
|
392
|
|
|
|
|
393
|
|
|
scatter = np.array(scatter).flatten() |
|
394
|
|
|
if scatter.size != len(self.dispersion): |
|
395
|
|
|
raise ValueError("number of scatter values does not match " |
|
396
|
|
|
"the number of pixels ({0} != {1})".format( |
|
397
|
|
|
scatter.size, len(self.dispersion))) |
|
398
|
|
|
if np.any(scatter < 0): |
|
399
|
|
|
raise ValueError("scatter terms must be positive") |
|
400
|
|
|
self._scatter = scatter |
|
401
|
|
|
return None |
|
402
|
|
|
|
|
403
|
|
|
|
|
404
|
|
|
@property |
|
405
|
|
|
def pivots(self): |
|
406
|
|
|
""" |
|
407
|
|
|
Return the mean values of the unique labels in the label vector. |
|
408
|
|
|
""" |
|
409
|
|
|
return self._pivots |
|
410
|
|
|
|
|
411
|
|
|
|
|
412
|
|
|
@pivots.setter |
|
413
|
|
|
def pivots(self, pivots): |
|
414
|
|
|
""" |
|
415
|
|
|
Return the pivot values for each unique label in the label vector. |
|
416
|
|
|
|
|
417
|
|
|
:param pivots: |
|
418
|
|
|
A list of pivot values for the corresponding terms in `self.labels`. |
|
419
|
|
|
""" |
|
420
|
|
|
|
|
421
|
|
|
if pivots is None: |
|
422
|
|
|
self._pivots = None |
|
423
|
|
|
return None |
|
424
|
|
|
|
|
425
|
|
|
""" |
|
426
|
|
|
if not isinstance(pivots, dict): |
|
427
|
|
|
raise TypeError("pivots must be a dictionary") |
|
428
|
|
|
|
|
429
|
|
|
missing = set(self.labels).difference(pivots) |
|
430
|
|
|
if any(missing): |
|
431
|
|
|
raise ValueError("pivot values for the following labels " |
|
432
|
|
|
"are missing: {}".format(", ".join(list(missing)))) |
|
433
|
|
|
|
|
434
|
|
|
if not np.all(np.isfinite(pivots.values())): |
|
435
|
|
|
raise ValueError("pivot values must be finite") |
|
436
|
|
|
|
|
437
|
|
|
self._pivots = pivots |
|
438
|
|
|
""" |
|
439
|
|
|
|
|
440
|
|
|
pivots = np.array(pivots).flatten() |
|
441
|
|
|
N_labels = len(self.labels) |
|
442
|
|
|
if pivots.size != N_labels: |
|
443
|
|
|
raise ValueError("number of pivot values does not match the " |
|
444
|
|
|
"number of unique labels in the label vector " |
|
445
|
|
|
"({0} != {1})".format(pivots.size, N_labels)) |
|
446
|
|
|
|
|
447
|
|
|
if not np.all(np.isfinite(pivots)): |
|
448
|
|
|
raise ValueError("pivot values must be finite") |
|
449
|
|
|
|
|
450
|
|
|
self._pivots = pivots |
|
451
|
|
|
return None |
|
452
|
|
|
|
|
453
|
|
|
|
|
454
|
|
|
# Methods which must be implemented or updated by the subclasses. |
|
455
|
|
|
def pixel_label_vector(self, pixel_index): |
|
456
|
|
|
""" The label vector for a given pixel. """ |
|
457
|
|
|
return self.label_vector |
|
458
|
|
|
|
|
459
|
|
|
|
|
460
|
|
|
def train(self, *args, **kwargs): |
|
461
|
|
|
raise NotImplementedError("The train method must be " |
|
462
|
|
|
"implemented by subclasses") |
|
463
|
|
|
|
|
464
|
|
|
|
|
465
|
|
|
def predict(self, *args, **kwargs): |
|
466
|
|
|
raise NotImplementedError("The predict method must be " |
|
467
|
|
|
"implemented by subclasses") |
|
468
|
|
|
|
|
469
|
|
|
|
|
470
|
|
|
def fit(self, *args, **kwargs): |
|
471
|
|
|
raise NotImplementedError("The fit method must be " |
|
472
|
|
|
"implemented by subclasses") |
|
473
|
|
|
|
|
474
|
|
|
|
|
475
|
|
|
# I/O |
|
476
|
|
|
@requires_training_wheels |
|
477
|
|
|
def save(self, filename, include_training_data=False, overwrite=False): |
|
478
|
|
|
""" |
|
479
|
|
|
Serialise the trained model and save it to disk. This will save all |
|
480
|
|
|
relevant training attributes, and optionally, the training data. |
|
481
|
|
|
|
|
482
|
|
|
:param filename: |
|
483
|
|
|
The path to save the model to. |
|
484
|
|
|
|
|
485
|
|
|
:param include_training_data: [optional] |
|
486
|
|
|
Save the training data (labels, fluxes, uncertainties) used to train |
|
487
|
|
|
the model. |
|
488
|
|
|
|
|
489
|
|
|
:param overwrite: [optional] |
|
490
|
|
|
Overwrite the existing file path, if it already exists. |
|
491
|
|
|
""" |
|
492
|
|
|
|
|
493
|
|
|
if path.exists(filename) and not overwrite: |
|
494
|
|
|
raise IOError("filename already exists: {0}".format(filename)) |
|
495
|
|
|
|
|
496
|
|
|
attributes = list(self._descriptive_attributes) \ |
|
497
|
|
|
+ list(self._trained_attributes) \ |
|
498
|
|
|
+ list(self._data_attributes) |
|
499
|
|
|
if "metadata" in attributes: |
|
500
|
|
|
raise ValueError("'metadata' is a protected attribute and cannot " |
|
501
|
|
|
"be used in the _*_attributes in a class") |
|
502
|
|
|
|
|
503
|
|
|
# Store up all the trained attributes and a hash of the training set. |
|
504
|
|
|
contents = OrderedDict([ |
|
505
|
|
|
(attr.lstrip("_"), getattr(self, attr)) for attr in \ |
|
506
|
|
|
(self._descriptive_attributes + self._trained_attributes)]) |
|
507
|
|
|
contents["training_set_hash"] = utils.short_hash(getattr(self, attr) \ |
|
508
|
|
|
for attr in self._data_attributes) |
|
509
|
|
|
|
|
510
|
|
|
if include_training_data: |
|
511
|
|
|
contents.update([(attr.lstrip("_"), getattr(self, attr)) \ |
|
512
|
|
|
for attr in self._data_attributes]) |
|
513
|
|
|
|
|
514
|
|
|
contents["metadata"] = { |
|
515
|
|
|
"version": code_version, |
|
516
|
|
|
"model_name": type(self).__name__, |
|
517
|
|
|
"modified": str(datetime.now()), |
|
518
|
|
|
"data_attributes": \ |
|
519
|
|
|
[_.lstrip("_") for _ in self._data_attributes], |
|
520
|
|
|
"trained_attributes": \ |
|
521
|
|
|
[_.lstrip("_") for _ in self._trained_attributes], |
|
522
|
|
|
"descriptive_attributes": \ |
|
523
|
|
|
[_.lstrip("_") for _ in self._descriptive_attributes] |
|
524
|
|
|
} |
|
525
|
|
|
|
|
526
|
|
|
with open(filename, "wb") as fp: |
|
527
|
|
|
pickle.dump(contents, fp, -1) |
|
528
|
|
|
|
|
529
|
|
|
return None |
|
530
|
|
|
|
|
531
|
|
|
|
|
532
|
|
|
def load(self, filename, verify_training_data=False): |
|
533
|
|
|
""" |
|
534
|
|
|
Load a saved model from disk. |
|
535
|
|
|
|
|
536
|
|
|
:param filename: |
|
537
|
|
|
The path where to load the model from. |
|
538
|
|
|
|
|
539
|
|
|
:param verify_training_data: [optional] |
|
540
|
|
|
If there is training data in the saved model, verify its contents. |
|
541
|
|
|
Otherwise if no training data is saved, verify that the data used |
|
542
|
|
|
to train the model is the same data provided when this model was |
|
543
|
|
|
instantiated. |
|
544
|
|
|
""" |
|
545
|
|
|
|
|
546
|
|
|
with open(filename, "rb") as fp: |
|
547
|
|
|
contents = pickle.load(fp) |
|
548
|
|
|
|
|
549
|
|
|
assert contents["metadata"]["model_name"] == type(self).__name__ |
|
550
|
|
|
|
|
551
|
|
|
# If data exists, deal with that first. |
|
552
|
|
|
has_data = (contents["metadata"]["data_attributes"][0] in contents) |
|
553
|
|
|
if has_data: |
|
554
|
|
|
|
|
555
|
|
|
if verify_training_data: |
|
556
|
|
|
data_hash = utils.short_hash(contents[attr] \ |
|
557
|
|
|
for attr in contents["metadata"]["data_attributes"]) |
|
558
|
|
|
if contents["training_set_hash"] is not None \ |
|
559
|
|
|
and data_hash != contents["training_set_hash"]: |
|
560
|
|
|
raise ValueError("expected hash for the training data is " |
|
561
|
|
|
"different to the actual data hash " |
|
562
|
|
|
"({0} != {1})".format( |
|
563
|
|
|
contents["training_set_hash"], |
|
564
|
|
|
data_hash)) |
|
565
|
|
|
|
|
566
|
|
|
# Set the data attributes. |
|
567
|
|
|
for attribute in contents["metadata"]["data_attributes"]: |
|
568
|
|
|
if attribute in contents: |
|
569
|
|
|
setattr(self, "_{}".format(attribute), contents[attribute]) |
|
570
|
|
|
|
|
571
|
|
|
# Set descriptive and trained attributes. |
|
572
|
|
|
self.reset() |
|
573
|
|
|
for attribute in contents["metadata"]["descriptive_attributes"]: |
|
574
|
|
|
setattr(self, "_{}".format(attribute), contents[attribute]) |
|
575
|
|
|
for attribute in contents["metadata"]["trained_attributes"]: |
|
576
|
|
|
setattr(self, "_{}".format(attribute), contents[attribute]) |
|
577
|
|
|
self._trained = True |
|
578
|
|
|
|
|
579
|
|
|
return None |
|
580
|
|
|
|
|
581
|
|
|
|
|
582
|
|
|
# Properties and attributes related to training, etc. |
|
583
|
|
|
@property |
|
584
|
|
|
@requires_model_description |
|
585
|
|
|
def labels_array(self): |
|
586
|
|
|
""" |
|
587
|
|
|
Return an array containing just the training labels, given the label |
|
588
|
|
|
vector. This array does not account for any pivoting. |
|
589
|
|
|
""" |
|
590
|
|
|
return _build_label_vector_rows([[(label, 1)] for label in self.labels], |
|
591
|
|
|
self.training_labels)[1:].T |
|
592
|
|
|
|
|
593
|
|
|
|
|
594
|
|
|
@property |
|
595
|
|
|
@requires_model_description |
|
596
|
|
|
def label_vector_array(self): |
|
597
|
|
|
""" |
|
598
|
|
|
Build the label vector array. |
|
599
|
|
|
""" |
|
600
|
|
|
|
|
601
|
|
|
lva = _build_label_vector_rows(self.label_vector, self.training_labels, |
|
602
|
|
|
dict(zip(self.labels, self.pivots))) |
|
603
|
|
|
|
|
604
|
|
|
if not np.all(np.isfinite(lva)): |
|
605
|
|
|
logger.warn("Non-finite labels in the label vector array!") |
|
606
|
|
|
return lva |
|
607
|
|
|
|
|
608
|
|
|
|
|
609
|
|
|
# Residuals in labels in the training data set. |
|
610
|
|
|
@requires_training_wheels |
|
611
|
|
|
def get_training_label_residuals(self): |
|
612
|
|
|
""" |
|
613
|
|
|
Return the residuals (model - training) between the parameters that the |
|
614
|
|
|
model returns for each star, and the training set value. |
|
615
|
|
|
""" |
|
616
|
|
|
|
|
617
|
|
|
optimised_labels = self.fit(self.training_fluxes, |
|
618
|
|
|
self.training_flux_uncertainties, full_output=False) |
|
619
|
|
|
|
|
620
|
|
|
return optimised_labels - self.labels_array |
|
621
|
|
|
|
|
622
|
|
|
|
|
623
|
|
|
def _format_input_labels(self, args=None, **kwargs): |
|
624
|
|
|
""" |
|
625
|
|
|
Format input labels either from a list or dictionary into a common form. |
|
626
|
|
|
""" |
|
627
|
|
|
|
|
628
|
|
|
# We want labels in a dictionary. |
|
629
|
|
|
labels = kwargs if args is None else dict(zip(self.labels, args)) |
|
630
|
|
|
return { k: (v if isinstance(v, (list, tuple, np.ndarray)) else [v]) \ |
|
631
|
|
|
for k, v in labels.items() } |
|
632
|
|
|
|
|
633
|
|
|
|
|
634
|
|
|
@requires_model_description |
|
635
|
|
|
def cross_validate(self, pre_train=None, **kwargs): |
|
636
|
|
|
""" |
|
637
|
|
|
Perform leave-one-out cross-validation on the training set. |
|
638
|
|
|
""" |
|
639
|
|
|
|
|
640
|
|
|
inferred = np.nan * np.ones_like(self.labels_array) |
|
641
|
|
|
N_training_set, N_labels = inferred.shape |
|
642
|
|
|
N_stop_at = kwargs.pop("N", N_training_set) |
|
643
|
|
|
|
|
644
|
|
|
debug = kwargs.pop("debug", False) |
|
645
|
|
|
|
|
646
|
|
|
kwds = { "threads": self.threads } |
|
647
|
|
|
kwds.update(kwargs) |
|
648
|
|
|
|
|
649
|
|
|
for i in range(N_training_set): |
|
650
|
|
|
|
|
651
|
|
|
training_set = np.ones(N_training_set, dtype=bool) |
|
652
|
|
|
training_set[i] = False |
|
653
|
|
|
|
|
654
|
|
|
# Create a clean model to use so we don't overwrite self. |
|
655
|
|
|
model = self.__class__( |
|
656
|
|
|
self.training_labels[training_set], |
|
657
|
|
|
self.training_fluxes[training_set], |
|
658
|
|
|
self.training_flux_uncertainties[training_set], |
|
659
|
|
|
**kwds) |
|
660
|
|
|
|
|
661
|
|
|
# Initialise and run any pre-training function. |
|
662
|
|
|
for _attribute in self._descriptive_attributes: |
|
663
|
|
|
setattr(model, _attribute[1:], getattr(self, _attribute[1:])) |
|
664
|
|
|
|
|
665
|
|
|
if pre_train is not None: |
|
666
|
|
|
pre_train(self, model) |
|
667
|
|
|
|
|
668
|
|
|
# Train and solve. |
|
669
|
|
|
model.train() |
|
670
|
|
|
|
|
671
|
|
|
try: |
|
672
|
|
|
inferred[i, :] = model.fit(self.training_fluxes[i], |
|
673
|
|
|
self.training_flux_uncertainties[i], full_output=False) |
|
674
|
|
|
|
|
675
|
|
|
except: |
|
676
|
|
|
logger.exception("Exception during cross-validation on object " |
|
677
|
|
|
"with index {0}:".format(i)) |
|
678
|
|
|
if debug: raise |
|
679
|
|
|
|
|
680
|
|
|
if i == N_stop_at + 1: |
|
681
|
|
|
break |
|
682
|
|
|
|
|
683
|
|
|
return inferred[:N_stop_at, :] |
|
684
|
|
|
|
|
685
|
|
|
|
|
686
|
|
|
@requires_training_wheels |
|
687
|
|
|
def define_continuum_mask(self, baseline_flux=None, tolerances=None, |
|
688
|
|
|
percentiles=None, absolute_percentiles=None): |
|
689
|
|
|
""" |
|
690
|
|
|
Define a continuum mask based on constraints on the baseline flux values |
|
691
|
|
|
and the percentiles or absolute percentiles of theta coefficients. The |
|
692
|
|
|
resulting continuum mask is taken for whatever pixels meet all the given |
|
693
|
|
|
constraints. |
|
694
|
|
|
|
|
695
|
|
|
:param baseline_flux: [optional] |
|
696
|
|
|
The `(lower, upper`) range of acceptable baseline flux values to be |
|
697
|
|
|
considered as continuum. |
|
698
|
|
|
|
|
699
|
|
|
:param percentiles: [optional] |
|
700
|
|
|
A dictionary containing the label vector description as keys and |
|
701
|
|
|
acceptable percentile ranges `(lower, upper)` for each corresponding |
|
702
|
|
|
label vector term. |
|
703
|
|
|
|
|
704
|
|
|
:param absolute_percentiles: [optional] |
|
705
|
|
|
The same as `percentiles`, except these are calculated on the |
|
706
|
|
|
absolute values of the model coefficients. |
|
707
|
|
|
""" |
|
708
|
|
|
|
|
709
|
|
|
mask = np.ones_like(self.dispersion, dtype=bool) |
|
710
|
|
|
if baseline_flux is not None: |
|
711
|
|
|
if len(baseline_flux) != 2: |
|
712
|
|
|
raise ValueError("baseline flux constraints must be given as " |
|
713
|
|
|
"(lower, upper)") |
|
714
|
|
|
mask *= (max(baseline_flux) >= self.coefficients[:, 0]) \ |
|
715
|
|
|
* (self.coefficients[:, 0] >= min(baseline_flux)) |
|
716
|
|
|
|
|
717
|
|
|
for term, constraints in (tolerances or {}).items(): |
|
718
|
|
|
if len(constraints) != 2: |
|
719
|
|
|
raise ValueError("{} tolerance must be given as (lower, upper)"\ |
|
720
|
|
|
.format(term)) |
|
721
|
|
|
|
|
722
|
|
|
p_term = utils.parse_label_vector(term)[0] |
|
723
|
|
|
if p_term not in self.label_vector: |
|
724
|
|
|
logger.warn("Term {0} ({1}) is not in the label vector, " |
|
725
|
|
|
"and is therefore being ignored".format( |
|
726
|
|
|
term, p_term)) |
|
727
|
|
|
continue |
|
728
|
|
|
|
|
729
|
|
|
a = self.coefficients[:, 1 + self.label_vector.index(p_term)] |
|
730
|
|
|
mask *= (max(constraints) >= a) * (a >= min(constraints)) |
|
731
|
|
|
|
|
732
|
|
|
for qs, use_abs in zip([percentiles, absolute_percentiles], [0, 1]): |
|
733
|
|
|
if qs is None: continue |
|
734
|
|
|
|
|
735
|
|
|
for term, constraints in qs.items(): |
|
736
|
|
|
if len(constraints) != 2: |
|
737
|
|
|
raise ValueError("{} constraints must be given as " |
|
738
|
|
|
"(lower, upper)".format(term)) |
|
739
|
|
|
|
|
740
|
|
|
p_term = utils.parse_label_vector(term)[0] |
|
741
|
|
|
if p_term not in self.label_vector: |
|
742
|
|
|
logger.warn("Term {0} ({1}) is not in the label vector, " |
|
743
|
|
|
"and is therefore being ignored".format( |
|
744
|
|
|
term, p_term)) |
|
745
|
|
|
continue |
|
746
|
|
|
|
|
747
|
|
|
a = self.coefficients[:, 1 + self.label_vector.index(p_term)] |
|
748
|
|
|
if use_abs: a = np.abs(a) |
|
749
|
|
|
|
|
750
|
|
|
p = np.percentile(a, constraints) |
|
751
|
|
|
mask *= (max(p) >= a) * (a >= min(p)) |
|
752
|
|
|
|
|
753
|
|
|
return mask |
|
754
|
|
|
|
|
755
|
|
|
|
|
756
|
|
|
def _build_label_vector_rows(label_vector, training_labels, pivots=None): |
|
757
|
|
|
""" |
|
758
|
|
|
Build a label vector row from a description of the label vector (as indices |
|
759
|
|
|
and orders to the power of) and the label values themselves. |
|
760
|
|
|
|
|
761
|
|
|
For example: if the first item of `labels` is `A`, and the label vector |
|
762
|
|
|
description is `A^3` then the first item of `label_vector` would be: |
|
763
|
|
|
|
|
764
|
|
|
`[[(0, 3)], ...` |
|
765
|
|
|
|
|
766
|
|
|
This indicates the first label item (index `0`) to the power `3`. |
|
767
|
|
|
|
|
768
|
|
|
:param label_vector: |
|
769
|
|
|
An `(index, order)` description of the label vector. |
|
770
|
|
|
|
|
771
|
|
|
:param training_labels: |
|
772
|
|
|
The values of the corresponding training labels. |
|
773
|
|
|
|
|
774
|
|
|
:returns: |
|
775
|
|
|
The corresponding label vector row. |
|
776
|
|
|
""" |
|
777
|
|
|
|
|
778
|
|
|
pivots = pivots or {} |
|
779
|
|
|
|
|
780
|
|
|
columns = [np.ones(len(training_labels), dtype=float)] |
|
781
|
|
|
for term in label_vector: |
|
782
|
|
|
column = 1. |
|
783
|
|
|
for label, order in term: |
|
784
|
|
|
column *= (np.array(training_labels[label]).flatten() \ |
|
785
|
|
|
- pivots.get(label, 0))**order |
|
786
|
|
|
columns.append(column) |
|
787
|
|
|
|
|
788
|
|
|
try: |
|
789
|
|
|
return np.vstack(columns) |
|
790
|
|
|
|
|
791
|
|
|
except ValueError: |
|
792
|
|
|
columns[0] = np.ones(1) |
|
793
|
|
|
return np.vstack(columns) |
|
794
|
|
|
|