Conditions | 10 |
Total Lines | 82 |
Lines | 0 |
Ratio | 0 % |
Changes | 2 | ||
Bugs | 0 | Features | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like plot_test_scalar_metrics() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
17 | def plot_test_scalar_metrics(metric_function, filenames, metric_label=None, |
||
18 | debug=True, **kwargs): |
||
19 | |||
20 | Lambdas = [] |
||
21 | scale_factors = [] |
||
22 | metrics = [] |
||
23 | |||
24 | for filename in filenames: |
||
25 | |||
26 | try: |
||
27 | _ = filename.split("-") |
||
28 | scale_factor = float(_[1]) |
||
29 | log10_Lambda = float(_[2].split(".model")[0]) |
||
30 | |||
31 | except: |
||
32 | print("Skipping filename {}".format(filename)) |
||
33 | continue |
||
34 | |||
35 | with open(filename, "rb") as fp: |
||
36 | contents = pickle.load(fp, encoding="latin-1") |
||
37 | |||
38 | snrs, high_snr_expected, high_snr_inferred, \ |
||
39 | differences_expected, differences_inferred, \ |
||
40 | single_visit_inferred = contents |
||
41 | |||
42 | # Calculate the metric. |
||
43 | try: |
||
44 | metric = metric_function(*contents) |
||
45 | metric = float(metric) # Must be a float |
||
46 | |||
47 | except: |
||
48 | logging.exception("Failed to calculate metric for {}".format(filename)) |
||
49 | if debug: raise |
||
50 | |||
51 | else: |
||
52 | |||
53 | metrics.append(metric) |
||
54 | Lambdas.append(10**log10_Lambda) |
||
55 | scale_factors.append(scale_factor) |
||
56 | |||
57 | metrics = np.array(metrics) |
||
58 | Lambdas = np.array(Lambdas) |
||
59 | scale_factors = np.array(scale_factors) |
||
60 | |||
61 | # Make the figure |
||
62 | fig, ax = plt.subplots() |
||
63 | |||
64 | # scale factors are non-linear, so lets show them as indices then we will |
||
65 | # adjust the y-ticks and labels as necessary |
||
66 | unique_scale_factors = list(np.sort(np.unique(scale_factors))) |
||
67 | scale_factor_indices \ |
||
68 | = np.array([unique_scale_factors.index(_) for _ in scale_factors]) |
||
69 | |||
70 | # Scale the points so that the best metric has s=250. |
||
71 | unity = 250 * min(metrics) |
||
72 | scat = ax.scatter(Lambdas, scale_factor_indices, c=metrics, s=unity/metrics, |
||
73 | cmap=plt.cm.plasma, vmin=0.04, vmax=0.11, **kwargs) |
||
74 | ax.set_yticks(np.arange(len(unique_scale_factors))) |
||
75 | ax.set_yticklabels([r"${0:.1f}$".format(_) for _ in unique_scale_factors]) |
||
76 | ax.set_ylim(-1, len(unique_scale_factors)) |
||
77 | |||
78 | # Draw a circle around the best three. |
||
79 | #for index, color in zip(np.argsort(metrics), ("k", )):#"#AAAAAA", "#BBBBBB", "#CCCCCC", "#DDDDDD")): |
||
80 | # ax.scatter([Lambdas[index]], [scale_factor_indices[index]], |
||
81 | # s=450, edgecolor=color, facecolor="w", zorder=-1, linewidths=2) |
||
82 | |||
83 | |||
84 | ax.semilogx() |
||
85 | |||
86 | for _ in np.arange(len(unique_scale_factors) - 1): |
||
87 | ax.axhline(_ + 0.5, c="#EEEEEE", zorder=-1) |
||
88 | |||
89 | cbar = plt.colorbar(scat) |
||
90 | cbar.set_label(metric_label or r"Metric") |
||
91 | cbar.set_ticks([0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11]) |
||
92 | |||
93 | ax.set_xlabel(r"$\rm{Regularization},$ $\Lambda$") |
||
94 | ax.set_ylabel(r"$\rm{Scale}$ $\rm{factor},$ $f$") |
||
95 | ax.yaxis.set_tick_params(width=0) |
||
96 | |||
97 | fig.tight_layout() |
||
98 | return fig |
||
99 | |||
163 | raise a |