Conditions | 41 |
Total Lines | 240 |
Lines | 48 |
Ratio | 20 % |
Changes | 2 | ||
Bugs | 0 | Features | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like plot_cluster_comparison() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
33 | def plot_cluster_comparison(data, cluster_name, membership, x_elements, |
||
34 | y_elements, used_cannon_for_target_selection=True, vel_lim=None, |
||
35 | xlims=None, ylims=None): |
||
36 | """ |
||
37 | membership should be same len as data |
||
38 | """ |
||
39 | |||
40 | candidate_color, membership_color = ("#666666", "#3498DB") |
||
41 | candidate_color, membership_color = ("#BBBBBB", "#3498DB") |
||
42 | tc_suffix, aspcap_suffix = ("", "_ASPCAP") |
||
43 | |||
44 | candidates = data["FIELD"] == cluster_name |
||
45 | |||
46 | membership_kwds = {"s": 50, "lw": 1.5} |
||
47 | candidate_kwds = {"s": 30, "marker": "+", "lw": 1.5} |
||
48 | |||
49 | fig, axes = plt.subplots(6, 2, figsize=(5.1, 16)) |
||
50 | axes = np.array(axes).flatten() |
||
51 | |||
52 | axes[0].set_visible(False) |
||
53 | axes[1].set_visible(False) |
||
54 | |||
55 | top_ax = plt.subplot(6, 1, 1) |
||
56 | |||
57 | |||
58 | # Vhelio and FE_H_1 (our metallicity?) |
||
59 | suffix = tc_suffix if used_cannon_for_target_selection else aspcap_suffix |
||
60 | top_ax.scatter( |
||
61 | data["VHELIO_AVG"][candidates], data["FE_H" + suffix][candidates], |
||
62 | facecolor=candidate_color, rasterized=True, |
||
63 | label=r"$\texttt{{FIELD = {0}}}$".format(cluster_name), |
||
64 | **candidate_kwds) |
||
65 | top_ax.scatter( |
||
66 | data["VHELIO_AVG"][membership], data["FE_H" + suffix][membership], |
||
67 | facecolor=membership_color, rasterized=True, **membership_kwds) |
||
68 | top_ax.errorbar( |
||
69 | data["VHELIO_AVG"][membership], data["FE_H" + suffix][membership], |
||
70 | xerr=data["VERR"][membership], yerr=data["E_FE_H" + suffix][membership], |
||
71 | rasterized=True, |
||
72 | fmt=None, ecolor="k", zorder=-1) |
||
73 | |||
74 | |||
75 | N, M = len(data["VHELIO_AVG"][candidates]), len(data["VHELIO_AVG"][membership]) |
||
76 | top_ax.text(0.05, 0.95, r"${:,}$".format(N), color=candidate_color, |
||
77 | verticalalignment="top", horizontalalignment="left", |
||
78 | transform=top_ax.transAxes) |
||
79 | top_ax.text(0.05, 0.95 - 0.11, r"${:,}$".format(M), color=membership_color, |
||
80 | verticalalignment="top", horizontalalignment="left", |
||
81 | transform=top_ax.transAxes) |
||
82 | |||
83 | #top_ax.legend(frameon=True, fontsize=11, loc="upper left") |
||
84 | |||
85 | top_ax.set_xlabel(r"$V_{\rm helio}$ $(\rm{km}$ $\rm{s}^{-1})$") |
||
86 | if used_cannon_for_target_selection: |
||
87 | top_ax.set_ylabel(r"$[\rm{Fe}/\rm{H}]$ $(\rm{The}$ $\rm{Cannon})$") |
||
88 | else: |
||
89 | top_ax.set_ylabel(r"$[\rm{Fe}/\rm{H}]$ $(\rm{ASPCAP})$") |
||
90 | |||
91 | top_ax.set_title(r"$\rm{{{0}}}$ $\rm{{membership}}$ $\rm{{selection}}$".format( |
||
92 | cluster_name)) |
||
93 | |||
94 | top_ax.xaxis.set_major_locator(MaxNLocator(4)) |
||
95 | top_ax.yaxis.set_major_locator(MaxNLocator(4)) |
||
96 | |||
97 | |||
98 | |||
99 | for j, (element_x, element_y) in enumerate(zip(x_elements, y_elements)): |
||
100 | |||
101 | x_wrt_fe, y_wrt_fe = (True, True) |
||
102 | |||
103 | if element_x.lower() == "fe": |
||
104 | x_wrt_fe = False |
||
105 | |||
106 | if element_y.lower() == "fe": |
||
107 | y_wrt_fe = False |
||
108 | |||
109 | # X/Y for The Cannon |
||
110 | for i, (mask, color) \ |
||
111 | in enumerate(zip((candidates, membership), (candidate_color, membership_color))): |
||
112 | |||
113 | xerr, yerr = None, None |
||
114 | View Code Duplication | if "," in element_x: |
|
|
|||
115 | x = 0 |
||
116 | xerr = 0 |
||
117 | for each in element_x.split(","): |
||
118 | x += data["{0}_H{1}".format(each.upper(), tc_suffix)] |
||
119 | xerr += data["E_{0}_H{1}".format(each.upper(), tc_suffix)]**2 |
||
120 | |||
121 | if x_wrt_fe: |
||
122 | x = x - data["FE_H{}".format(tc_suffix)] |
||
123 | |||
124 | if x_wrt_fe: |
||
125 | xerr += data["E_FE_H{0}".format(tc_suffix)]**2 |
||
126 | xerr = np.sqrt(xerr) |
||
127 | |||
128 | else: |
||
129 | x = data["{0}_H{1}".format(element_x.upper(), tc_suffix)] |
||
130 | if x_wrt_fe: |
||
131 | x = x - data["FE_H{}".format(tc_suffix)] |
||
132 | xerr = ( |
||
133 | data["E_{0}_H{1}".format(element_x.upper(), tc_suffix)]**2 + \ |
||
134 | data["E_FE_H{0}".format(tc_suffix)]**2)**0.5 |
||
135 | |||
136 | else: |
||
137 | xerr = data["E_{0}_H{1}".format(element_x.upper(), tc_suffix)] |
||
138 | |||
139 | |||
140 | View Code Duplication | if "," in element_y: |
|
141 | y = 0 |
||
142 | yerr = 0 |
||
143 | for each in element_y.split(","): |
||
144 | y += data["{0}_H{1}".format(each.upper(), tc_suffix)] |
||
145 | yerr += data["E_{0}_H{1}".format(each.upper(), tc_suffix)]**2 |
||
146 | |||
147 | if y_wrt_fe: |
||
148 | y = y - data["FE_H{}".format(tc_suffix)] |
||
149 | |||
150 | if y_wrt_fe: |
||
151 | yerr += data["E_FE_H{}".format(tc_suffix)]**2 |
||
152 | yerr = np.sqrt(yerr) |
||
153 | |||
154 | else: |
||
155 | y = data["{0}_H{1}".format(element_y.upper(), tc_suffix)] |
||
156 | if y_wrt_fe: |
||
157 | y = y - data["FE_H{}".format(tc_suffix)] |
||
158 | yerr = ( |
||
159 | data["E_{0}_H{1}".format(element_y.upper(), tc_suffix)]**2 + \ |
||
160 | data["E_FE_H{0}".format(tc_suffix)]**2 |
||
161 | )**0.5 |
||
162 | else: |
||
163 | yerr = data["E_{0}_H{1}".format(element_y.upper(), tc_suffix)] |
||
164 | |||
165 | |||
166 | kwds = candidate_kwds if i == 0 else membership_kwds |
||
167 | axes[2*j + 2 + 1].scatter(x[mask], y[mask], facecolor=color, rasterized=True, **kwds) |
||
168 | if xerr is not None and yerr is not None and color == membership_color: |
||
169 | axes[2*j + 2 + 1].errorbar(x[mask], y[mask], |
||
170 | xerr=xerr[mask], yerr=yerr[mask], |
||
171 | fmt=None, ecolor="k", zorder=-1, rasterized=True) |
||
172 | |||
173 | # Quote the number of points. |
||
174 | axes[2*j + 2 + 1].text(0.05, 0.95 - i * 0.10, r"${:,}$".format(len(x[mask])), |
||
175 | color=color, |
||
176 | verticalalignment="top", horizontalalignment="left", |
||
177 | transform=axes[2*j + 2 + 1].transAxes) |
||
178 | |||
179 | |||
180 | if xlims is None: |
||
181 | tc_xlims = axes[2*j + 2 + 1].get_xlim() |
||
182 | percent = 0.20 # 10% |
||
183 | half_ptp = (np.ptp(tc_xlims) * (1 + percent))/2. |
||
184 | tc_xlims = (np.mean(tc_xlims) - half_ptp, half_ptp + np.mean(tc_xlims)) |
||
185 | |||
186 | else: |
||
187 | tc_xlims = xlims |
||
188 | |||
189 | if ylims is None: |
||
190 | tc_ylims = axes[2*j + 2 + 1].get_ylim() |
||
191 | # Expand the scale just a little bit. |
||
192 | percent = 0.20 # 10% |
||
193 | half_ptp = (np.ptp(tc_ylims) * (1 + percent))/2. |
||
194 | tc_ylims = (np.mean(tc_ylims) - half_ptp, half_ptp + np.mean(tc_ylims)) |
||
195 | else: |
||
196 | tc_ylims = ylims |
||
197 | |||
198 | # X/Y for ASPCAP. |
||
199 | for i, (mask, color) \ |
||
200 | in enumerate(zip((candidates, membership), (candidate_color, membership_color))): |
||
201 | |||
202 | if "," in element_x: |
||
203 | x = 0 |
||
204 | for each in element_x.split(","): |
||
205 | x += data["{0}_H{1}".format(each.upper(), aspcap_suffix)] |
||
206 | if x_wrt_fe: |
||
207 | x = x - data["FE_H{}".format(aspcap_suffix)] |
||
208 | else: |
||
209 | x = data["{0}_H{1}".format(element_x.upper(), aspcap_suffix)] |
||
210 | if x_wrt_fe: |
||
211 | x = x - data["FE_H{}".format(aspcap_suffix)] |
||
212 | |||
213 | |||
214 | if "," in element_y: |
||
215 | y = 0 |
||
216 | for each in element_y.split(","): |
||
217 | y += data["{0}_H{1}".format(each.upper(), aspcap_suffix)] |
||
218 | if y_wrt_fe: |
||
219 | y = y - data["FE_H{}".format(aspcap_suffix)] |
||
220 | else: |
||
221 | y = data["{0}_H{1}".format(element_y.upper(), aspcap_suffix)] |
||
222 | if y_wrt_fe: |
||
223 | y = y - data["FE_H{}".format(aspcap_suffix)] |
||
224 | |||
225 | kwds = candidate_kwds if i == 0 else membership_kwds |
||
226 | axes[2*j + 2].scatter(x[mask], y[mask], facecolor=color, rasterized=True, **kwds) |
||
227 | |||
228 | N = sum((tc_xlims[1] > x[mask]) * (x[mask] > tc_xlims[0]) \ |
||
229 | * (tc_ylims[1] > y[mask]) * (y[mask] > tc_ylims[0])) |
||
230 | axes[2*j + 2].text(0.05, 0.95 - i * 0.10, r"${:,}$".format(N), color=color, |
||
231 | verticalalignment="top", horizontalalignment="left", |
||
232 | transform=axes[2*j + 2].transAxes) |
||
233 | |||
234 | |||
235 | if j == 0: |
||
236 | axes[2*j + 2].set_title(r"${\rm ASPCAP}$", y=1.05) |
||
237 | axes[2*j + 2 + 1].set_title(r"${\rm The}$ ${\rm Cannon}$", y=1.05) |
||
238 | |||
239 | |||
240 | for ax in (axes[2*j + 2], axes[2*j + 2 + 1]): |
||
241 | ax.set_xlim(tc_xlims) |
||
242 | ax.set_ylim(tc_ylims) |
||
243 | |||
244 | ax.xaxis.set_major_locator(MaxNLocator(4)) |
||
245 | ax.yaxis.set_major_locator(MaxNLocator(4)) |
||
246 | |||
247 | ax.set_xlabel(r"$[\rm{{{0}}}/\rm{{{1}}}]$".format(element_x.title(), |
||
248 | "Fe" if x_wrt_fe else "H")) |
||
249 | |||
250 | if "," in element_y: |
||
251 | axes[2*j + 2].set_ylabel(r"$[(\rm{{{0}}})/{{{1}}}\rm{{{2}}}]$".format( |
||
252 | element_y.replace(",", "+"), element_y.count(",") + 1, |
||
253 | "Fe" if y_wrt_fe else "H")) |
||
254 | else: |
||
255 | axes[2*j + 2].set_ylabel(r"$[\rm{{{0}}}/\rm{{{1}}}]$".format(element_y.title(), |
||
256 | "Fe" if y_wrt_fe else "H")) |
||
257 | axes[2*j + 2 + 1].yaxis.set_ticklabels([]) |
||
258 | |||
259 | |||
260 | for ax in axes[2:]: |
||
261 | ax.set(adjustable='box-forced', aspect=np.ptp(ax.get_xlim())/np.ptp(ax.get_ylim())) |
||
262 | |||
263 | fig.tight_layout() |
||
264 | |||
265 | if vel_lim is not None: |
||
266 | top_ax.set_xlim(vel_lim) |
||
267 | |||
268 | fig.subplots_adjust(hspace=-0.0, bottom=0.03) |
||
269 | pos = top_ax.get_position() |
||
270 | top_ax.set_position([pos.x0, pos.y0 + 0.06, pos.width, pos.height - 0.06]) |
||
271 | |||
272 | return fig |
||
273 | |||
355 |