|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
""" |
|
5
|
|
|
Unit tests for the Cannon model class and associated functions. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import sys |
|
10
|
|
|
import unittest |
|
11
|
|
|
from six.moves import cPickle as pickle |
|
12
|
|
|
from os import path, remove |
|
13
|
|
|
from tempfile import mkstemp |
|
14
|
|
|
|
|
15
|
|
|
from AnniesLasso import cannon, utils |
|
16
|
|
|
|
|
17
|
|
|
|
|
18
|
|
|
class TestCannonModel(unittest.TestCase): |
|
19
|
|
|
|
|
20
|
|
View Code Duplication |
def setUp(self): |
|
|
|
|
|
|
21
|
|
|
# Initialise some faux data and labels. |
|
22
|
|
|
labels = "ABCDE" |
|
23
|
|
|
N_labels = len(labels) |
|
24
|
|
|
N_stars = np.random.randint(1, 500) |
|
25
|
|
|
N_pixels = np.random.randint(1, 10000) |
|
26
|
|
|
shape = (N_stars, N_pixels) |
|
27
|
|
|
|
|
28
|
|
|
self.valid_training_labels = np.rec.array( |
|
29
|
|
|
np.random.uniform(size=(N_stars, N_labels)), |
|
30
|
|
|
dtype=[(label, '<f8') for label in labels]) |
|
31
|
|
|
|
|
32
|
|
|
self.valid_fluxes = np.random.uniform(size=shape) |
|
33
|
|
|
self.valid_flux_uncertainties = np.random.uniform(size=shape) |
|
34
|
|
|
|
|
35
|
|
|
def get_model(self): |
|
36
|
|
|
return cannon.CannonModel( |
|
37
|
|
|
self.valid_training_labels, self.valid_fluxes, |
|
38
|
|
|
self.valid_flux_uncertainties) |
|
39
|
|
|
|
|
40
|
|
|
def test_init(self): |
|
41
|
|
|
self.assertIsNotNone(self.get_model()) |
|
42
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
# The test_data_set.pkl contains: |
|
45
|
|
|
# (training_labels, training_fluxes, training_flux_uncertainties, coefficients, |
|
46
|
|
|
# scatter, label_vector) |
|
47
|
|
|
# The training labels are not named, but they are: (TEFF, LOGG, PARAM_M_H) |
|
48
|
|
|
|
|
49
|
|
|
class TestCannonModelRealistically(unittest.TestCase): |
|
50
|
|
|
|
|
51
|
|
|
def setUp(self): |
|
52
|
|
|
# Set up a model using the test data set. |
|
53
|
|
|
here = path.dirname(path.realpath(__file__)) |
|
54
|
|
|
kwds = { "encoding": "latin1" } \ |
|
55
|
|
|
if sys.version_info[0] >= 3 else {} |
|
56
|
|
|
with open(path.join(here, "test_data_set.pkl"), "rb") as fp: |
|
57
|
|
|
contents = pickle.load(fp, **kwds) |
|
58
|
|
|
|
|
59
|
|
|
# Unpack it all |
|
60
|
|
|
training_labels, training_fluxes, training_flux_uncertainties, \ |
|
61
|
|
|
coefficients, scatter, pivots, label_vector = contents |
|
62
|
|
|
|
|
63
|
|
|
training_labels = np.core.records.fromarrays(training_labels, |
|
64
|
|
|
names="TEFF,LOGG,PARAM_M_H", formats="f8,f8,f8") |
|
65
|
|
|
|
|
66
|
|
|
self.test_data_set = { |
|
67
|
|
|
"training_labels": training_labels, |
|
68
|
|
|
"training_fluxes": training_fluxes, |
|
69
|
|
|
"training_flux_uncertainties": training_flux_uncertainties, |
|
70
|
|
|
"coefficients": coefficients, |
|
71
|
|
|
"scatter": scatter, |
|
72
|
|
|
"pivots": pivots, |
|
73
|
|
|
"label_vector": label_vector |
|
74
|
|
|
|
|
75
|
|
|
} |
|
76
|
|
|
self.model_serial = cannon.CannonModel(training_labels, training_fluxes, |
|
77
|
|
|
training_flux_uncertainties) |
|
78
|
|
|
self.model_parallel = cannon.CannonModel(training_labels, |
|
79
|
|
|
training_fluxes, training_flux_uncertainties, threads=2) |
|
80
|
|
|
|
|
81
|
|
|
self.models = (self.model_serial, self.model_parallel) |
|
82
|
|
|
|
|
83
|
|
|
def do_training(self): |
|
84
|
|
|
for model in self.models: |
|
85
|
|
|
model.reset() |
|
86
|
|
|
model.label_vector = self.test_data_set["label_vector"] |
|
87
|
|
|
self.assertIsNotNone(model.train()) |
|
88
|
|
|
|
|
89
|
|
|
# Check that the trained attributes in both model are equal. |
|
90
|
|
|
for _attribute in self.model_serial._trained_attributes: |
|
91
|
|
|
|
|
92
|
|
|
# And nearly as we expected. |
|
93
|
|
|
self.assertTrue(np.allclose( |
|
94
|
|
|
getattr(self.model_serial, _attribute), |
|
95
|
|
|
getattr(self.model_parallel, _attribute) |
|
96
|
|
|
)) |
|
97
|
|
|
|
|
98
|
|
|
self.assertTrue(np.allclose( |
|
99
|
|
|
self.test_data_set[_attribute[1:]], |
|
100
|
|
|
getattr(self.model_serial, _attribute))) |
|
101
|
|
|
#rtol=0.5, atol=1e-8)) |
|
102
|
|
|
|
|
103
|
|
|
def do_residuals(self): |
|
104
|
|
|
serial = self.model_serial.get_training_label_residuals() |
|
105
|
|
|
parallel = self.model_parallel.get_training_label_residuals() |
|
106
|
|
|
self.assertTrue(np.allclose(serial, parallel)) |
|
107
|
|
|
|
|
108
|
|
|
def ruin_the_trained_coefficients(self): |
|
109
|
|
|
self.model_serial.scatter = None |
|
110
|
|
|
self.assertIsNone(self.model_serial.scatter) |
|
111
|
|
|
|
|
112
|
|
|
with self.assertRaises(ValueError): |
|
113
|
|
|
self.model_parallel.scatter = [3] |
|
114
|
|
|
|
|
115
|
|
|
for item in (0., False, True): |
|
116
|
|
|
with self.assertRaises(ValueError): |
|
117
|
|
|
self.model_parallel.scatter = item |
|
118
|
|
|
|
|
119
|
|
|
with self.assertRaises(ValueError): |
|
120
|
|
|
self.model_parallel.scatter = \ |
|
121
|
|
|
-1 * np.ones_like(self.model_parallel.dispersion) |
|
122
|
|
|
|
|
123
|
|
|
_ = np.array(self.model_parallel.scatter).copy() |
|
124
|
|
|
_ += 1. |
|
125
|
|
|
self.model_parallel.scatter = _ |
|
126
|
|
|
self.assertTrue(np.allclose(_, self.model_parallel.scatter)) |
|
127
|
|
|
|
|
128
|
|
|
|
|
129
|
|
|
self.model_serial.coefficients = None |
|
130
|
|
|
self.assertIsNone(self.model_serial.coefficients) |
|
131
|
|
|
|
|
132
|
|
|
with self.assertRaises(ValueError): |
|
133
|
|
|
self.model_parallel.coefficients = np.arange(12).reshape((3, 2, 2)) |
|
134
|
|
|
|
|
135
|
|
|
with self.assertRaises(ValueError): |
|
136
|
|
|
_ = np.ones_like(self.model_parallel.coefficients) |
|
137
|
|
|
self.model_parallel.coefficients = _.T |
|
138
|
|
|
|
|
139
|
|
|
with self.assertRaises(ValueError): |
|
140
|
|
|
_ = np.ones_like(self.model_parallel.coefficients) |
|
141
|
|
|
self.model_parallel.coefficients = _[:, :-1] |
|
142
|
|
|
|
|
143
|
|
|
_ = np.array(self.model_parallel.coefficients).copy() |
|
144
|
|
|
_ += 0.5 |
|
145
|
|
|
self.model_parallel.coefficients = _ |
|
146
|
|
|
self.assertTrue(np.allclose(_, self.model_parallel.coefficients)) |
|
147
|
|
|
|
|
148
|
|
|
def do_io(self): |
|
149
|
|
|
|
|
150
|
|
|
_, temp_filename = mkstemp() |
|
151
|
|
|
remove(temp_filename) |
|
152
|
|
|
self.model_serial.save(temp_filename, include_training_data=False) |
|
153
|
|
|
with self.assertRaises(IOError): |
|
154
|
|
|
self.model_serial.save(temp_filename, overwrite=False) |
|
155
|
|
|
|
|
156
|
|
|
names = ("_data_attributes", "_trained_attributes", |
|
157
|
|
|
"_descriptive_attributes") |
|
158
|
|
|
attrs = ( |
|
159
|
|
|
self.model_serial._data_attributes, |
|
160
|
|
|
self.model_serial._trained_attributes, |
|
161
|
|
|
self.model_serial._descriptive_attributes |
|
162
|
|
|
) |
|
163
|
|
|
for name, item in zip(names, attrs): |
|
164
|
|
|
_ = [] + list(item) |
|
165
|
|
|
_.append("metadata") |
|
166
|
|
|
setattr(self.model_serial, name, _) |
|
167
|
|
|
with self.assertRaises(ValueError): |
|
168
|
|
|
self.model_serial.save(temp_filename, overwrite=True) |
|
169
|
|
|
setattr(self.model_serial, name, _[:-1]) |
|
170
|
|
|
|
|
171
|
|
|
self.model_serial.save(temp_filename, include_training_data=True, |
|
172
|
|
|
overwrite=True) |
|
173
|
|
|
|
|
174
|
|
|
self.model_parallel.reset() |
|
175
|
|
|
self.model_parallel.load(temp_filename, verify_training_data=True) |
|
176
|
|
|
|
|
177
|
|
|
# Check that the trained attributes in both model are equal. |
|
178
|
|
|
for _attribute in self.model_serial._trained_attributes: |
|
179
|
|
|
|
|
180
|
|
|
# And nearly as we expected. |
|
181
|
|
|
self.assertTrue(np.allclose( |
|
182
|
|
|
getattr(self.model_serial, _attribute), |
|
183
|
|
|
getattr(self.model_parallel, _attribute) |
|
184
|
|
|
)) |
|
185
|
|
|
|
|
186
|
|
|
self.assertTrue(np.allclose( |
|
187
|
|
|
self.test_data_set[_attribute[1:]], |
|
188
|
|
|
getattr(self.model_serial, _attribute))) |
|
189
|
|
|
#rtol=0.5, atol=1e-8)) |
|
190
|
|
|
|
|
191
|
|
|
# Check that the data attributes in both model are equal. |
|
192
|
|
|
for _attribute in self.model_serial._data_attributes: |
|
193
|
|
|
self.assertTrue( |
|
194
|
|
|
utils.short_hash(getattr(self.model_serial, _attribute)), |
|
195
|
|
|
utils.short_hash(getattr(self.model_parallel, _attribute)) |
|
196
|
|
|
) |
|
197
|
|
|
|
|
198
|
|
|
# Alter the hash and expect failure |
|
199
|
|
|
kwds = { "encoding": "latin1" } if sys.version_info[0] >= 3 else {} |
|
200
|
|
|
with open(temp_filename, "rb") as fp: |
|
201
|
|
|
contents = pickle.load(fp, **kwds) |
|
202
|
|
|
|
|
203
|
|
|
contents["training_set_hash"] = "" |
|
204
|
|
|
with open(temp_filename, "wb") as fp: |
|
205
|
|
|
pickle.dump(contents, fp, -1) |
|
206
|
|
|
|
|
207
|
|
|
with self.assertRaises(ValueError): |
|
208
|
|
|
self.model_serial.load(temp_filename, verify_training_data=True) |
|
209
|
|
|
|
|
210
|
|
|
if path.exists(temp_filename): |
|
211
|
|
|
remove(temp_filename) |
|
212
|
|
|
|
|
213
|
|
|
def do_cv(self): |
|
214
|
|
|
self.model_parallel.cross_validate(N=1, debug=True) |
|
215
|
|
|
|
|
216
|
|
|
def choo_choo(old, new): |
|
217
|
|
|
None |
|
218
|
|
|
|
|
219
|
|
|
self.model_parallel.cross_validate(N=1, debug=True, pre_train=choo_choo) |
|
220
|
|
|
|
|
221
|
|
|
def do_predict(self): |
|
222
|
|
|
_ = [self.model_serial.training_labels[label][0] \ |
|
223
|
|
|
for label in self.model_serial.labels] |
|
224
|
|
|
self.assertTrue(np.allclose( |
|
225
|
|
|
self.model_serial.predict(_), |
|
226
|
|
|
self.model_serial.predict(**dict(zip(self.model_serial.labels, _))))) |
|
227
|
|
|
|
|
228
|
|
|
def do_fit(self): |
|
229
|
|
|
self.assertIsNotNone( |
|
230
|
|
|
self.model_serial.fit(self.model_serial.training_fluxes[0], |
|
231
|
|
|
self.model_serial.training_flux_uncertainties[0], |
|
232
|
|
|
full_output=True)) |
|
233
|
|
|
|
|
234
|
|
|
def do_edge_cases(self): |
|
235
|
|
|
self.model_serial.reset() |
|
236
|
|
|
|
|
237
|
|
|
# This label vector only contains one term in cross-terms (PARAM_M_H) |
|
238
|
|
|
self.model_serial.label_vector = \ |
|
239
|
|
|
"TEFF^3 + TEFF^2 + TEFF + LOGG + PARAM_M_H*LOGG" |
|
240
|
|
|
self.assertIn(None, self.model_serial._get_lowest_order_label_indices()) |
|
241
|
|
|
|
|
242
|
|
|
# Set large uncertainties for one pixel. |
|
243
|
|
|
self.model_serial._training_flux_uncertainties[:, 0] = 10. |
|
244
|
|
|
self.model_serial._training_fluxes[:, 1] = \ |
|
245
|
|
|
np.random.uniform(low=-0.5, high=0.5, |
|
246
|
|
|
size=self.model_serial._training_fluxes.shape[0]) |
|
247
|
|
|
|
|
248
|
|
|
# Train and fit using this unusual label vector. |
|
249
|
|
|
self.model_serial.train() |
|
250
|
|
|
self.model_serial.fit(self.model_serial._training_fluxes[1], |
|
251
|
|
|
self.model_serial._training_flux_uncertainties[1]) |
|
252
|
|
|
|
|
253
|
|
|
# See if we can make things break or warn. |
|
254
|
|
|
self.model_serial._training_fluxes[10] = 1000. |
|
255
|
|
|
self.model_serial._training_flux_uncertainties[10] = 0. |
|
256
|
|
|
self.model_serial.reset() |
|
257
|
|
|
self.model_serial.label_vector = "TEFF^5 + LOGG^3 + PARAM_M_H^5" |
|
258
|
|
|
for label in self.model_serial.labels: |
|
259
|
|
|
self.model_serial._training_labels[label] = 0. |
|
260
|
|
|
self.model_serial.train() |
|
261
|
|
|
|
|
262
|
|
|
# TODO: Force things to break |
|
263
|
|
|
#with self.assertRaises(np.linalg.linalg.LinAlgError): |
|
264
|
|
|
# self.model_serial.train(debug=True) |
|
265
|
|
|
|
|
266
|
|
|
#with self.assertRaises(np.linalg.linalg.LinAlgError): |
|
267
|
|
|
# self.model_serial.cross_validate(N=1, debug=True) |
|
268
|
|
|
|
|
269
|
|
|
def runTest(self): |
|
270
|
|
|
|
|
271
|
|
|
# Train all. |
|
272
|
|
|
self.do_training() |
|
273
|
|
|
|
|
274
|
|
|
self.do_residuals() |
|
275
|
|
|
|
|
276
|
|
|
self.ruin_the_trained_coefficients() |
|
277
|
|
|
|
|
278
|
|
|
# Train again. |
|
279
|
|
|
self.do_training() |
|
280
|
|
|
|
|
281
|
|
|
# Predict stuff. |
|
282
|
|
|
self.do_predict() |
|
283
|
|
|
|
|
284
|
|
|
self.do_fit() |
|
285
|
|
|
|
|
286
|
|
|
# Do cross-validation. |
|
287
|
|
|
self.do_cv() |
|
288
|
|
|
|
|
289
|
|
|
# Try I/O/ |
|
290
|
|
|
self.do_io() |
|
291
|
|
|
|
|
292
|
|
|
# Do_edges |
|
293
|
|
|
self.do_edge_cases() |
|
294
|
|
|
|
|
295
|
|
|
|