|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
""" |
|
5
|
|
|
A regularized (compressed sensing) version of The Cannon. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
from __future__ import (division, print_function, absolute_import, |
|
9
|
|
|
unicode_literals) |
|
10
|
|
|
|
|
11
|
|
|
__all__ = ["RegularizedCannonModel"] |
|
12
|
|
|
|
|
13
|
|
|
import logging |
|
14
|
|
|
import numpy as np |
|
15
|
|
|
import scipy.optimize as op |
|
16
|
|
|
|
|
17
|
|
|
from . import (cannon, model, utils) |
|
18
|
|
|
|
|
19
|
|
|
logger = logging.getLogger(__name__) |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
class RegularizedCannonModel(cannon.CannonModel): |
|
23
|
|
|
""" |
|
24
|
|
|
A L1-regularized edition of The Cannon model for the estimation of arbitrary |
|
25
|
|
|
stellar labels. |
|
26
|
|
|
|
|
27
|
|
|
:param labels: |
|
28
|
|
|
A table with columns as labels, and stars as rows. |
|
29
|
|
|
|
|
30
|
|
|
:type labels: |
|
31
|
|
|
:class:`~astropy.table.Table` or numpy structured array |
|
32
|
|
|
|
|
33
|
|
|
:param fluxes: |
|
34
|
|
|
An array of fluxes for stars in the training set, given as shape |
|
35
|
|
|
`(num_stars, num_pixels)`. The `num_stars` should match the number of |
|
36
|
|
|
rows in `labels`. |
|
37
|
|
|
|
|
38
|
|
|
:type fluxes: |
|
39
|
|
|
:class:`np.ndarray` |
|
40
|
|
|
|
|
41
|
|
|
:param flux_uncertainties: |
|
42
|
|
|
An array of 1-sigma flux uncertainties for stars in the training set, |
|
43
|
|
|
The shape of the `flux_uncertainties` should match `fluxes`. |
|
44
|
|
|
|
|
45
|
|
|
:type flux_uncertainties: |
|
46
|
|
|
:class:`np.ndarray` |
|
47
|
|
|
|
|
48
|
|
|
:param dispersion: [optional] |
|
49
|
|
|
The dispersion values corresponding to the given pixels. If provided, |
|
50
|
|
|
this should have length `num_pixels`. |
|
51
|
|
|
|
|
52
|
|
|
:param live_dangerously: [optional] |
|
53
|
|
|
If enabled then no checks will be made on the label names, prohibiting |
|
54
|
|
|
the user to input human-readable forms of the label vector. |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
_descriptive_attributes = ["_label_vector", "_regularization"] |
|
58
|
|
|
|
|
59
|
|
|
def __init__(self, *args, **kwargs): |
|
60
|
|
|
super(RegularizedCannonModel, self).__init__(*args, **kwargs) |
|
61
|
|
|
|
|
62
|
|
|
|
|
63
|
|
|
@property |
|
64
|
|
|
def regularization(self): |
|
65
|
|
|
return self._regularization |
|
66
|
|
|
|
|
67
|
|
|
|
|
68
|
|
|
@regularization.setter |
|
69
|
|
|
def regularization(self, regularization): |
|
70
|
|
|
if regularization is None: |
|
71
|
|
|
self._regularization = None |
|
72
|
|
|
return None |
|
73
|
|
|
|
|
74
|
|
|
# Can be positive float, or positive values for all pixels. |
|
75
|
|
|
try: |
|
76
|
|
|
regularization = float(regularization) |
|
77
|
|
|
except (TypeError, ValueError): |
|
78
|
|
|
regularization = np.array(regularization).flatten() |
|
79
|
|
|
|
|
80
|
|
|
if regularization.size != len(self.dispersion): |
|
81
|
|
|
raise ValueError("regularization must be a positive value or " |
|
82
|
|
|
"an array of positive values for each pixel " |
|
83
|
|
|
"({0} != {1})".format( |
|
84
|
|
|
regularization.size, |
|
85
|
|
|
len(self.dispersion))) |
|
86
|
|
|
|
|
87
|
|
|
if any(0 > regularization) \ |
|
88
|
|
|
or not np.all(np.isfinite(regularization)): |
|
89
|
|
|
raise ValueError("regularization terms must be " |
|
90
|
|
|
"positive and finite") |
|
91
|
|
|
else: |
|
92
|
|
|
if 0 > regularization or not np.isfinite(regularization): |
|
93
|
|
|
raise ValueError("regularization term must be " |
|
94
|
|
|
"positive and finite") |
|
95
|
|
|
regularization = np.ones_like(self.dispersion) * regularization |
|
96
|
|
|
self._regularization = regularization |
|
97
|
|
|
return None |
|
98
|
|
|
|
|
99
|
|
|
|
|
100
|
|
|
# windows to specify zero coefficients for a given label (or terms comprising) |
|
101
|
|
|
# that label. |
|
102
|
|
|
|
|
103
|
|
|
|
|
104
|
|
|
@model.requires_model_description |
|
105
|
|
|
def train(self, **kwargs): |
|
106
|
|
|
""" |
|
107
|
|
|
Train the model based on the training set and the description of the |
|
108
|
|
|
label vector, and enforce regularization. |
|
109
|
|
|
""" |
|
110
|
|
|
|
|
111
|
|
|
# Initialise the scatter and coefficient arrays. |
|
112
|
|
|
N_pixels = len(self.dispersion) |
|
113
|
|
|
scatter = np.nan * np.ones(N_pixels) |
|
114
|
|
|
label_vector_array = self.label_vector_array |
|
115
|
|
|
theta = np.nan * np.ones((N_pixels, label_vector_array.shape[0])) |
|
116
|
|
|
|
|
117
|
|
|
# Details for the progressbar. |
|
118
|
|
|
pb_kwds = { |
|
119
|
|
|
"message": "Training regularized Cannon model from {0} stars with "\ |
|
120
|
|
|
"{1} pixels each".format( |
|
121
|
|
|
len(self.training_labels), N_pixels), |
|
122
|
|
|
"size": 100 if kwargs.pop("progressbar", True) else -1 |
|
123
|
|
|
} |
|
124
|
|
|
|
|
125
|
|
|
if self.pool is None: |
|
126
|
|
|
for pixel in utils.progressbar(range(N_pixels), **pb_kwds): |
|
127
|
|
|
theta[pixel, :], scatter[pixel] = _fit_pixel( |
|
128
|
|
|
self.training_fluxes[:, pixel], |
|
129
|
|
|
self.training_flux_uncertainties[:, pixel], |
|
130
|
|
|
label_vector_array, self.regularization[pixel], |
|
131
|
|
|
**kwargs) |
|
132
|
|
|
|
|
133
|
|
|
else: |
|
134
|
|
|
# Not as nice as just mapping, but necessary for a progress bar. |
|
135
|
|
|
process = { pixel: self.pool.apply_async(_fit_pixel, args=( |
|
136
|
|
|
self.training_fluxes[:, pixel], |
|
137
|
|
|
self.training_flux_uncertainties[:, pixel], |
|
138
|
|
|
label_vector_array, self.regularization[pixel] |
|
139
|
|
|
), kwds=kwargs) \ |
|
140
|
|
|
for pixel in range(N_pixels) } |
|
141
|
|
|
|
|
142
|
|
|
for pixel, proc in utils.progressbar(process.items(), **pb_kwds): |
|
143
|
|
|
theta[pixel, :], scatter[pixel] = proc.get() |
|
144
|
|
|
|
|
145
|
|
|
self.coefficients, self.scatter = (theta, scatter) |
|
146
|
|
|
self._trained = True |
|
147
|
|
|
|
|
148
|
|
|
return (theta, scatter) |
|
149
|
|
|
|
|
150
|
|
|
|
|
151
|
|
|
def conservative_cross_validation(self, **kwargs): |
|
152
|
|
|
""" |
|
153
|
|
|
Perform conservative cross-validation using cyclic training, validation, |
|
154
|
|
|
and test subsets of the labelled data. |
|
155
|
|
|
""" |
|
156
|
|
|
|
|
157
|
|
|
""" |
|
158
|
|
|
Assign integer probabilities for each star. |
|
159
|
|
|
|
|
160
|
|
|
0: for choosing the regularization term. |
|
161
|
|
|
1-8 inclusive: training set. |
|
162
|
|
|
9: for prediction. |
|
163
|
|
|
""" |
|
164
|
|
|
|
|
165
|
|
|
subset_index = np.random.randint(0, 10, size=len(self.training_labels)) |
|
166
|
|
|
|
|
167
|
|
|
# Start with an initial value of the regularization. |
|
168
|
|
|
|
|
169
|
|
|
raise NotImplementedError |
|
170
|
|
|
|
|
171
|
|
|
|
|
172
|
|
|
|
|
173
|
|
View Code Duplication |
def _fit_pixel(fluxes, flux_uncertainties, label_vector_array, |
|
|
|
|
|
|
174
|
|
|
regularization, **kwargs): |
|
175
|
|
|
""" |
|
176
|
|
|
Return the optimal label vector coefficients and scatter for a pixel, given |
|
177
|
|
|
the fluxes, uncertainties, and the label vector array. |
|
178
|
|
|
|
|
179
|
|
|
:param fluxes: |
|
180
|
|
|
The fluxes for the given pixel, from all stars. |
|
181
|
|
|
|
|
182
|
|
|
:param flux_uncertainties: |
|
183
|
|
|
The 1-sigma flux uncertainties for the given pixel, from all stars. |
|
184
|
|
|
|
|
185
|
|
|
:param label_vector_array: |
|
186
|
|
|
The label vector array. This should have shape `(N_stars, N_terms + 1)`. |
|
187
|
|
|
|
|
188
|
|
|
:param regularization: |
|
189
|
|
|
The regularization term. |
|
190
|
|
|
|
|
191
|
|
|
:returns: |
|
192
|
|
|
The optimised label vector coefficients and scatter for this pixel. |
|
193
|
|
|
""" |
|
194
|
|
|
|
|
195
|
|
|
_ = kwargs.get("max_uncertainty", 1) |
|
196
|
|
|
failed_response = (np.nan * np.ones(label_vector_array.shape[0]), _) |
|
197
|
|
|
if np.all(flux_uncertainties >= _): |
|
198
|
|
|
return failed_response |
|
199
|
|
|
|
|
200
|
|
|
# Get an initial guess of the scatter. |
|
201
|
|
|
scatter = np.var(fluxes) - np.median(flux_uncertainties)**2 |
|
202
|
|
|
scatter = np.sqrt(scatter) if scatter >= 0 else np.std(fluxes) |
|
203
|
|
|
|
|
204
|
|
|
# Optimise the scatter, and at each scatter value we will calculate the |
|
205
|
|
|
# optimal vector coefficients. |
|
206
|
|
|
op_scatter, fopt, direc, n_iter, n_funcs, warnflag = op.fmin_powell( |
|
207
|
|
|
_pixel_scatter_nll, scatter, |
|
208
|
|
|
args=(fluxes, flux_uncertainties, label_vector_array, regularization), |
|
209
|
|
|
disp=False, full_output=True) |
|
210
|
|
|
|
|
211
|
|
|
if warnflag > 0: |
|
212
|
|
|
logger.warning("Warning: {}".format([ |
|
213
|
|
|
"Maximum number of function evaluations made during optimisation.", |
|
214
|
|
|
"Maximum number of iterations made during optimisation." |
|
215
|
|
|
][warnflag - 1])) |
|
216
|
|
|
|
|
217
|
|
|
# Calculate the coefficients at the optimal scatter value. |
|
218
|
|
|
# Note that if we can't solve for the coefficients, we should just set them |
|
219
|
|
|
# as zero and send back a giant variance. |
|
220
|
|
|
try: |
|
221
|
|
|
coefficients, ATCiAinv, variance = cannon._fit_coefficients( |
|
222
|
|
|
fluxes, flux_uncertainties, op_scatter, label_vector_array) |
|
223
|
|
|
|
|
224
|
|
|
except np.linalg.linalg.LinAlgError: |
|
225
|
|
|
logger.exception("Failed to calculate coefficients") |
|
226
|
|
|
if kwargs.get("debug", False): raise |
|
227
|
|
|
|
|
228
|
|
|
return failed_response |
|
229
|
|
|
|
|
230
|
|
|
else: |
|
231
|
|
|
return (coefficients, op_scatter) |
|
232
|
|
|
|
|
233
|
|
|
|
|
234
|
|
|
def _pixel_scatter_nll(scatter, fluxes, flux_uncertainties, label_vector_array, |
|
235
|
|
|
regularization, **kwargs): |
|
236
|
|
|
""" |
|
237
|
|
|
Return the negative log-likelihood for the scatter in a single pixel. |
|
238
|
|
|
|
|
239
|
|
|
:param scatter: |
|
240
|
|
|
The model scatter in the pixel. |
|
241
|
|
|
|
|
242
|
|
|
:param fluxes: |
|
243
|
|
|
The fluxes for a given pixel (in many stars). |
|
244
|
|
|
|
|
245
|
|
|
:param flux_uncertainties: |
|
246
|
|
|
The 1-sigma uncertainties in the fluxes for a given pixel. This should |
|
247
|
|
|
have the same shape as `fluxes`. |
|
248
|
|
|
|
|
249
|
|
|
:param label_vector_array: |
|
250
|
|
|
The label vector array for each star, for the given pixel. |
|
251
|
|
|
|
|
252
|
|
|
:param regularization: |
|
253
|
|
|
A regularization term. |
|
254
|
|
|
|
|
255
|
|
|
:returns: |
|
256
|
|
|
The log-likelihood of the log scatter, given the fluxes and the label |
|
257
|
|
|
vector array. |
|
258
|
|
|
|
|
259
|
|
|
:raises np.linalg.linalg.LinAlgError: |
|
260
|
|
|
If there was an error in inverting a matrix, and `debug` is set to True. |
|
261
|
|
|
""" |
|
262
|
|
|
|
|
263
|
|
|
if 0 > scatter: |
|
264
|
|
|
return np.inf |
|
265
|
|
|
|
|
266
|
|
|
try: |
|
267
|
|
|
# Calculate the coefficients for the given level of scatter. |
|
268
|
|
|
theta, ATCiAinv, variance = cannon._fit_coefficients( |
|
269
|
|
|
fluxes, flux_uncertainties, scatter, label_vector_array) |
|
270
|
|
|
|
|
271
|
|
|
except np.linalg.linalg.LinAlgError: |
|
272
|
|
|
if kwargs.get("debug", False): raise |
|
273
|
|
|
return np.inf |
|
274
|
|
|
|
|
275
|
|
|
model = np.dot(theta, label_vector_array) |
|
276
|
|
|
|
|
277
|
|
|
return np.sum((fluxes - model)**2 / variance) \ |
|
278
|
|
|
+ np.sum(np.log(variance)) \ |
|
279
|
|
|
+ regularization * np.abs(theta).sum() |
|
280
|
|
|
|