1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
|
|
""" |
5
|
|
|
Unit tests for the Regularized Cannon model class and associated functions. |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import unittest |
10
|
|
|
from AnniesLasso import regularized, utils |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class TestRegularizedCannonModel(unittest.TestCase): |
14
|
|
|
|
15
|
|
View Code Duplication |
def setUp(self): |
|
|
|
|
16
|
|
|
# Initialise some faux data and labels. |
17
|
|
|
labels = "ABCDE" |
18
|
|
|
N_labels = len(labels) |
19
|
|
|
N_stars = np.random.randint(1, 500) |
20
|
|
|
N_pixels = np.random.randint(1, 10000) |
21
|
|
|
shape = (N_stars, N_pixels) |
22
|
|
|
|
23
|
|
|
self.valid_training_labels = np.rec.array( |
24
|
|
|
np.random.uniform(size=(N_stars, N_labels)), |
25
|
|
|
dtype=[(label, '<f8') for label in labels]) |
26
|
|
|
|
27
|
|
|
self.valid_fluxes = np.random.uniform(size=shape) |
28
|
|
|
self.valid_flux_uncertainties = np.random.uniform(size=shape) |
29
|
|
|
|
30
|
|
|
def get_model(self): |
31
|
|
|
return regularized.RegularizedCannonModel( |
32
|
|
|
self.valid_training_labels, self.valid_fluxes, |
33
|
|
|
self.valid_flux_uncertainties) |
34
|
|
|
|
35
|
|
|
def test_init(self): |
36
|
|
|
self.assertIsNotNone(self.get_model()) |
37
|
|
|
|
38
|
|
|
def test_remind_myself_to_write_unit_tests_for_these_functions(self): |
39
|
|
|
m = self.get_model() |
40
|
|
|
m.label_vector = "A + B + C" |
41
|
|
|
self.assertIsNotNone(m.label_vector) |
42
|
|
|
|
43
|
|
|
# Cannot train without regularization term. |
44
|
|
|
with self.assertRaises(TypeError): |
45
|
|
|
m.train() |
46
|
|
|
|
47
|
|
|
# Regularization must be positive and finite. |
48
|
|
|
for each in (-1, np.nan, +np.inf, -np.inf): |
49
|
|
|
with self.assertRaises(ValueError): |
50
|
|
|
m.regularization = each |
51
|
|
|
|
52
|
|
|
# Regularization must be a float or match the dispersion size. |
53
|
|
|
with self.assertRaises(ValueError): |
54
|
|
|
m.regularization = [0., 1.] |
55
|
|
|
m.regularization = np.zeros_like(m.dispersion) |
56
|
|
|
m.train() |
57
|
|
|
|