|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
""" |
|
5
|
|
|
Unit tests for the Regularized Cannon model class and associated functions. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import unittest |
|
10
|
|
|
from AnniesLasso import regularized, utils |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
class TestRegularizedCannonModel(unittest.TestCase): |
|
14
|
|
|
|
|
15
|
|
View Code Duplication |
def setUp(self): |
|
|
|
|
|
|
16
|
|
|
# Initialise some faux data and labels. |
|
17
|
|
|
labels = "ABCDE" |
|
18
|
|
|
N_labels = len(labels) |
|
19
|
|
|
N_stars = np.random.randint(1, 500) |
|
20
|
|
|
N_pixels = np.random.randint(1, 10000) |
|
21
|
|
|
shape = (N_stars, N_pixels) |
|
22
|
|
|
|
|
23
|
|
|
self.valid_training_labels = np.rec.array( |
|
24
|
|
|
np.random.uniform(size=(N_stars, N_labels)), |
|
25
|
|
|
dtype=[(label, '<f8') for label in labels]) |
|
26
|
|
|
|
|
27
|
|
|
self.valid_fluxes = np.random.uniform(size=shape) |
|
28
|
|
|
self.valid_flux_uncertainties = np.random.uniform(size=shape) |
|
29
|
|
|
|
|
30
|
|
|
def get_model(self): |
|
31
|
|
|
return regularized.RegularizedCannonModel( |
|
32
|
|
|
self.valid_training_labels, self.valid_fluxes, |
|
33
|
|
|
self.valid_flux_uncertainties) |
|
34
|
|
|
|
|
35
|
|
|
def test_init(self): |
|
36
|
|
|
self.assertIsNotNone(self.get_model()) |
|
37
|
|
|
|
|
38
|
|
|
def test_remind_myself_to_write_unit_tests_for_these_functions(self): |
|
39
|
|
|
m = self.get_model() |
|
40
|
|
|
m.label_vector = "A + B + C" |
|
41
|
|
|
self.assertIsNotNone(m.label_vector) |
|
42
|
|
|
|
|
43
|
|
|
# Cannot train without regularization term. |
|
44
|
|
|
with self.assertRaises(TypeError): |
|
45
|
|
|
m.train() |
|
46
|
|
|
|
|
47
|
|
|
# Regularization must be positive and finite. |
|
48
|
|
|
for each in (-1, np.nan, +np.inf, -np.inf): |
|
49
|
|
|
with self.assertRaises(ValueError): |
|
50
|
|
|
m.regularization = each |
|
51
|
|
|
|
|
52
|
|
|
# Regularization must be a float or match the dispersion size. |
|
53
|
|
|
with self.assertRaises(ValueError): |
|
54
|
|
|
m.regularization = [0., 1.] |
|
55
|
|
|
m.regularization = np.zeros_like(m.dispersion) |
|
56
|
|
|
m.train() |
|
57
|
|
|
|