|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
""" |
|
5
|
|
|
Unit tests for the base model class and associated functions. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import unittest |
|
10
|
|
|
from AnniesLasso import model, utils |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
class NullObject(object): |
|
14
|
|
|
pass |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class TestRequiresTrainingWheels(unittest.TestCase): |
|
18
|
|
|
def test_not_trained(self): |
|
19
|
|
|
o = NullObject() |
|
20
|
|
|
o.is_trained = False |
|
21
|
|
|
with self.assertRaises(TypeError): |
|
22
|
|
|
model.requires_training_wheels(lambda x: None)(o) |
|
23
|
|
|
|
|
24
|
|
|
def test_is_trained(self): |
|
25
|
|
|
o = NullObject() |
|
26
|
|
|
o.is_trained = True |
|
27
|
|
|
self.assertIsNone(model.requires_training_wheels(lambda x: None)(o)) |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
class TestRequiresLabelVector(unittest.TestCase): |
|
31
|
|
|
def test_with_label_vector(self): |
|
32
|
|
|
o = NullObject() |
|
33
|
|
|
o._descriptive_attributes = ["label_vector"] |
|
34
|
|
|
o.label_vector = "" |
|
35
|
|
|
self.assertIsNone(model.requires_model_description(lambda x: None)(o)) |
|
36
|
|
|
|
|
37
|
|
|
def test_without_label_vector(self): |
|
38
|
|
|
o = NullObject() |
|
39
|
|
|
o._descriptive_attributes = ["label_vector"] |
|
40
|
|
|
o.label_vector = None |
|
41
|
|
|
with self.assertRaises(TypeError): |
|
42
|
|
|
model.requires_model_description(lambda x: None)(o) |
|
43
|
|
|
|
|
44
|
|
|
|
|
45
|
|
|
class TestBaseCannonModel(unittest.TestCase): |
|
46
|
|
|
|
|
47
|
|
|
def setUp(self): |
|
48
|
|
|
# Initialise some faux data and labels. |
|
49
|
|
|
labels = "ABCDE" |
|
50
|
|
|
N_labels = len(labels) |
|
51
|
|
|
N_stars = np.random.randint(10, 500) |
|
52
|
|
|
N_pixels = np.random.randint(1, 10000) |
|
53
|
|
|
shape = (N_stars, N_pixels) |
|
54
|
|
|
|
|
55
|
|
|
self.valid_training_labels = np.rec.array( |
|
56
|
|
|
np.random.uniform(low=0.5, high=1.5, size=(N_stars, N_labels)), |
|
57
|
|
|
dtype=[(label, '<f8') for label in labels]) |
|
58
|
|
|
|
|
59
|
|
|
self.valid_fluxes = np.random.uniform(low=0.5, high=1.5, size=shape) |
|
60
|
|
|
self.valid_flux_uncertainties = np.random.uniform(low=0.5, high=1.5, |
|
61
|
|
|
size=shape) |
|
62
|
|
|
|
|
63
|
|
|
def runTest(self): |
|
64
|
|
|
None |
|
65
|
|
|
|
|
66
|
|
|
def get_model(self, **kwargs): |
|
67
|
|
|
return model.BaseCannonModel( |
|
68
|
|
|
self.valid_training_labels, self.valid_fluxes, |
|
69
|
|
|
self.valid_flux_uncertainties, **kwargs) |
|
70
|
|
|
|
|
71
|
|
|
def test_repr(self): |
|
72
|
|
|
self.runTest() # Just for that 100%, baby. |
|
73
|
|
|
m = self.get_model() |
|
74
|
|
|
print("{0} {1}".format(m.__str__(), m.__repr__())) |
|
75
|
|
|
|
|
76
|
|
|
def test_get_dispersion(self): |
|
77
|
|
|
m = self.get_model() |
|
78
|
|
|
self.assertSequenceEqual( |
|
79
|
|
|
tuple(m.dispersion), |
|
80
|
|
|
tuple(np.arange(self.valid_fluxes.shape[1]))) |
|
81
|
|
|
|
|
82
|
|
|
def test_set_dispersion(self): |
|
83
|
|
|
m = self.get_model() |
|
84
|
|
|
for item in (None, False, True): |
|
85
|
|
|
# Incorrect data type (not an iterable) |
|
86
|
|
|
with self.assertRaises(TypeError): |
|
87
|
|
|
m.dispersion = item |
|
88
|
|
|
|
|
89
|
|
|
for item in ("", {}, [], (), set()): |
|
90
|
|
|
# These are iterable but have the wrong lengths. |
|
91
|
|
|
with self.assertRaises(ValueError): |
|
92
|
|
|
m.dispersion = item |
|
93
|
|
|
|
|
94
|
|
|
with self.assertRaises(ValueError): |
|
95
|
|
|
m.dispersion = [3,4,2,1] |
|
96
|
|
|
|
|
97
|
|
|
# These should work. |
|
98
|
|
|
m.dispersion = 10 + np.arange(self.valid_fluxes.shape[1]) |
|
99
|
|
|
m.dispersion = -100 + np.arange(self.valid_fluxes.shape[1]) |
|
100
|
|
|
m.dispersion = 520938.4 + np.arange(self.valid_fluxes.shape[1]) |
|
101
|
|
|
|
|
102
|
|
|
# Disallow non-finite numbers. |
|
103
|
|
|
with self.assertRaises(ValueError): |
|
104
|
|
|
d = np.arange(self.valid_fluxes.shape[1], dtype=float) |
|
105
|
|
|
d[0] = np.nan |
|
106
|
|
|
m.dispersion = d |
|
107
|
|
|
|
|
108
|
|
|
with self.assertRaises(ValueError): |
|
109
|
|
|
d = np.arange(self.valid_fluxes.shape[1], dtype=float) |
|
110
|
|
|
d[0] = np.inf |
|
111
|
|
|
m.dispersion = d |
|
112
|
|
|
|
|
113
|
|
|
with self.assertRaises(ValueError): |
|
114
|
|
|
d = np.arange(self.valid_fluxes.shape[1], dtype=float) |
|
115
|
|
|
d[0] = -np.inf |
|
116
|
|
|
m.dispersion = d |
|
117
|
|
|
|
|
118
|
|
|
# Disallow non-float like things. |
|
119
|
|
|
with self.assertRaises(ValueError): |
|
120
|
|
|
d = np.array([""] * self.valid_fluxes.shape[1]) |
|
121
|
|
|
m.dispersion = d |
|
122
|
|
|
|
|
123
|
|
|
with self.assertRaises(ValueError): |
|
124
|
|
|
d = np.array([None] * self.valid_fluxes.shape[1]) |
|
125
|
|
|
m.dispersion = d |
|
126
|
|
|
|
|
127
|
|
|
def test_get_training_data(self): |
|
128
|
|
|
m = self.get_model() |
|
129
|
|
|
self.assertIsNotNone(m.training_labels) |
|
130
|
|
|
self.assertIsNotNone(m.training_fluxes) |
|
131
|
|
|
self.assertIsNotNone(m.training_flux_uncertainties) |
|
132
|
|
|
|
|
133
|
|
|
def test_invalid_label_names(self): |
|
134
|
|
|
m = self.get_model() |
|
135
|
|
|
for character in m._forbidden_label_characters: |
|
136
|
|
|
|
|
137
|
|
|
invalid_labels = [] + list(m.labels_available) |
|
138
|
|
|
invalid_labels[0] = "HELLO_{}".format(character) |
|
139
|
|
|
|
|
140
|
|
|
N_stars = len(self.valid_training_labels) |
|
141
|
|
|
N_labels = len(invalid_labels) |
|
142
|
|
|
invalid_training_labels = np.rec.array( |
|
143
|
|
|
np.random.uniform(size=(N_stars, N_labels)), |
|
144
|
|
|
dtype=[(l, '<f8') for l in invalid_labels]) |
|
145
|
|
|
|
|
146
|
|
|
m = model.BaseCannonModel(invalid_training_labels, |
|
147
|
|
|
self.valid_fluxes, self.valid_flux_uncertainties, |
|
148
|
|
|
live_dangerously=True) |
|
149
|
|
|
|
|
150
|
|
|
m._forbidden_label_characters = None |
|
151
|
|
|
self.assertTrue(m._verify_labels_available()) |
|
152
|
|
|
|
|
153
|
|
|
with self.assertRaises(ValueError): |
|
154
|
|
|
m = model.BaseCannonModel(invalid_training_labels, |
|
155
|
|
|
self.valid_fluxes, self.valid_flux_uncertainties) |
|
156
|
|
|
|
|
157
|
|
|
def test_get_label_vector(self): |
|
158
|
|
|
m = self.get_model() |
|
159
|
|
|
m.label_vector = "A + B + C" |
|
160
|
|
|
self.assertEqual(m.pixel_label_vector(1), [ |
|
161
|
|
|
[("A", 1)], |
|
162
|
|
|
[("B", 1)], |
|
163
|
|
|
[("C", 1)] |
|
164
|
|
|
]) |
|
165
|
|
|
|
|
166
|
|
|
def test_set_label_vector(self): |
|
167
|
|
|
m = self.get_model() |
|
168
|
|
|
label_vector = "A + B + C + D + E" |
|
169
|
|
|
|
|
170
|
|
|
m.label_vector = label_vector |
|
171
|
|
|
self.assertEqual(m.label_vector, utils.parse_label_vector(label_vector)) |
|
172
|
|
|
self.assertEqual("1 + A + B + C + D + E", m.human_readable_label_vector) |
|
173
|
|
|
|
|
174
|
|
|
with self.assertRaises(ValueError): |
|
175
|
|
|
m.label_vector = "A + G" |
|
176
|
|
|
|
|
177
|
|
|
m.label_vector = None |
|
178
|
|
|
self.assertIsNone(m.label_vector) |
|
179
|
|
|
|
|
180
|
|
|
for item in (True, False, 0, 1.0): |
|
181
|
|
|
with self.assertRaises(TypeError): |
|
182
|
|
|
m.label_vector = item |
|
183
|
|
|
|
|
184
|
|
|
def test_label_getsetters(self): |
|
185
|
|
|
|
|
186
|
|
|
m = self.get_model() |
|
187
|
|
|
self.assertEqual((), m.labels) |
|
188
|
|
|
|
|
189
|
|
|
m.label_vector = "A + B + C" |
|
190
|
|
|
self.assertSequenceEqual(("A", "B", "C"), tuple(m.labels)) |
|
191
|
|
|
|
|
192
|
|
|
with self.assertRaises(AttributeError): |
|
193
|
|
|
m.labels = None |
|
194
|
|
|
|
|
195
|
|
|
def test_inheritence(self): |
|
196
|
|
|
m = self.get_model() |
|
197
|
|
|
m.label_vector = "A + B + C" |
|
198
|
|
|
with self.assertRaises(NotImplementedError): |
|
199
|
|
|
m.train() |
|
200
|
|
|
m._trained = True |
|
201
|
|
|
with self.assertRaises(NotImplementedError): |
|
202
|
|
|
m.predict() |
|
203
|
|
|
with self.assertRaises(NotImplementedError): |
|
204
|
|
|
m.fit() |
|
205
|
|
|
|
|
206
|
|
|
def test_get_label_indices(self): |
|
207
|
|
|
m = self.get_model() |
|
208
|
|
|
m.label_vector = "A^5 + A^2 + B^3 + C + C*D + D^6" |
|
209
|
|
|
self.assertEqual([1, 2, 3, 5], m._get_lowest_order_label_indices()) |
|
210
|
|
|
|
|
211
|
|
|
def test_data_verification(self): |
|
212
|
|
|
m = self.get_model() |
|
213
|
|
|
m._training_fluxes = m._training_fluxes.reshape(1, -1) |
|
214
|
|
|
with self.assertRaises(ValueError): |
|
215
|
|
|
m._verify_training_data() |
|
216
|
|
|
|
|
217
|
|
|
m._training_flux_uncertainties = \ |
|
218
|
|
|
m._training_flux_uncertainties.reshape(m._training_fluxes.shape) |
|
219
|
|
|
with self.assertRaises(ValueError): |
|
220
|
|
|
m._verify_training_data() |
|
221
|
|
|
|
|
222
|
|
|
with self.assertRaises(ValueError): |
|
223
|
|
|
m = self.get_model(dispersion=[1,2,3]) |
|
224
|
|
|
|
|
225
|
|
|
N_labels = 2 |
|
226
|
|
|
N_stars, N_pixels = self.valid_fluxes.shape |
|
227
|
|
|
invalid_training_labels = np.random.uniform( |
|
228
|
|
|
low=0.5, high=1.5, size=(N_stars, N_labels)) |
|
229
|
|
|
with self.assertRaises(ValueError): |
|
230
|
|
|
m = model.BaseCannonModel(invalid_training_labels, |
|
231
|
|
|
self.valid_fluxes, self.valid_flux_uncertainties) |
|
232
|
|
|
|
|
233
|
|
|
def test_labels_array(self): |
|
234
|
|
|
m = self.get_model() |
|
235
|
|
|
m.label_vector = "A^2 + B^3 + C^5" |
|
236
|
|
|
|
|
237
|
|
|
for i, label in enumerate("ABC"): |
|
238
|
|
|
foo = m.labels_array[:, i] |
|
239
|
|
|
bar = np.array(m.training_labels[label]).flatten() |
|
240
|
|
|
self.assertTrue(np.allclose(foo, bar)) |
|
241
|
|
|
|
|
242
|
|
|
with self.assertRaises(AttributeError): |
|
243
|
|
|
m.labels_array = None |
|
244
|
|
|
|
|
245
|
|
|
def test_label_vector_array(self): |
|
246
|
|
|
m = self.get_model() |
|
247
|
|
|
m.label_vector = "A^2.0 + B^3.4 + C^5" |
|
248
|
|
|
m.pivots = np.zeros(len(m.labels)) |
|
249
|
|
|
|
|
250
|
|
|
self.assertTrue(np.allclose( |
|
251
|
|
|
np.array(m.training_labels["A"]**2).flatten(), |
|
252
|
|
|
m.label_vector_array[1], |
|
253
|
|
|
)) |
|
254
|
|
|
self.assertTrue(np.allclose( |
|
255
|
|
|
np.array(m.training_labels["B"]**3.4).flatten(), |
|
256
|
|
|
m.label_vector_array[2] |
|
257
|
|
|
)) |
|
258
|
|
|
self.assertTrue(np.allclose( |
|
259
|
|
|
np.array(m.training_labels["C"]**5).flatten(), |
|
260
|
|
|
m.label_vector_array[3] |
|
261
|
|
|
)) |
|
262
|
|
|
|
|
263
|
|
|
m.training_labels["A"][0] = np.nan |
|
264
|
|
|
m.label_vector_array # For Coveralls. |
|
265
|
|
|
|
|
266
|
|
|
kwd1 = { |
|
267
|
|
|
"A": float(m.training_labels["A"][1]), |
|
268
|
|
|
"B": float(m.training_labels["B"][1]), |
|
269
|
|
|
"C": float(m.training_labels["C"][1]) |
|
270
|
|
|
} |
|
271
|
|
|
kwd2 = { |
|
272
|
|
|
"A": [m.training_labels["A"][1][0]], |
|
273
|
|
|
"B": [m.training_labels["B"][1][0]], |
|
274
|
|
|
"C": [m.training_labels["C"][1][0]] |
|
275
|
|
|
} |
|
276
|
|
|
self.assertTrue(np.allclose( |
|
277
|
|
|
model._build_label_vector_rows(m.label_vector, kwd1), |
|
278
|
|
|
model._build_label_vector_rows(m.label_vector, kwd2) |
|
279
|
|
|
)) |
|
280
|
|
|
|
|
281
|
|
|
def test_format_input_labels(self): |
|
282
|
|
|
m = self.get_model() |
|
283
|
|
|
m.label_vector = "A^2.0 + B^3.4 + C^5" |
|
284
|
|
|
|
|
285
|
|
|
kwds = {"A": [5], "B": [3], "C": [0.43]} |
|
286
|
|
|
for k, v in m._format_input_labels(None, **kwds).items(): |
|
287
|
|
|
self.assertEqual(kwds[k], v) |
|
288
|
|
|
for k, v in m._format_input_labels([5, 3, 0.43]).items(): |
|
289
|
|
|
self.assertEqual(kwds[k], v) |
|
290
|
|
|
|
|
291
|
|
|
kwds_input = {k: v[0] for k, v in kwds.items() } |
|
292
|
|
|
for k, v in m._format_input_labels(None, **kwds_input).items(): |
|
293
|
|
|
self.assertEqual(kwds[k], v) |
|
294
|
|
|
|
|
295
|
|
|
|
|
296
|
|
|
|
|
297
|
|
|
|
|
298
|
|
|
# The trained attributes and I/O functions will be tested in the sub-classes |
|
299
|
|
|
|