1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
|
|
""" |
5
|
|
|
Unit tests for the base model class and associated functions. |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import unittest |
10
|
|
|
from AnniesLasso import model, utils |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class NullObject(object): |
14
|
|
|
pass |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class TestRequiresTrainingWheels(unittest.TestCase): |
18
|
|
|
def test_not_trained(self): |
19
|
|
|
o = NullObject() |
20
|
|
|
o.is_trained = False |
21
|
|
|
with self.assertRaises(TypeError): |
22
|
|
|
model.requires_training_wheels(lambda x: None)(o) |
23
|
|
|
|
24
|
|
|
def test_is_trained(self): |
25
|
|
|
o = NullObject() |
26
|
|
|
o.is_trained = True |
27
|
|
|
self.assertIsNone(model.requires_training_wheels(lambda x: None)(o)) |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
class TestRequiresLabelVector(unittest.TestCase): |
31
|
|
|
def test_with_label_vector(self): |
32
|
|
|
o = NullObject() |
33
|
|
|
o._descriptive_attributes = ["label_vector"] |
34
|
|
|
o.label_vector = "" |
35
|
|
|
self.assertIsNone(model.requires_model_description(lambda x: None)(o)) |
36
|
|
|
|
37
|
|
|
def test_without_label_vector(self): |
38
|
|
|
o = NullObject() |
39
|
|
|
o._descriptive_attributes = ["label_vector"] |
40
|
|
|
o.label_vector = None |
41
|
|
|
with self.assertRaises(TypeError): |
42
|
|
|
model.requires_model_description(lambda x: None)(o) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
class TestBaseCannonModel(unittest.TestCase): |
46
|
|
|
|
47
|
|
|
def setUp(self): |
48
|
|
|
# Initialise some faux data and labels. |
49
|
|
|
labels = "ABCDE" |
50
|
|
|
N_labels = len(labels) |
51
|
|
|
N_stars = np.random.randint(10, 500) |
52
|
|
|
N_pixels = np.random.randint(1, 10000) |
53
|
|
|
shape = (N_stars, N_pixels) |
54
|
|
|
|
55
|
|
|
self.valid_training_labels = np.rec.array( |
56
|
|
|
np.random.uniform(low=0.5, high=1.5, size=(N_stars, N_labels)), |
57
|
|
|
dtype=[(label, '<f8') for label in labels]) |
58
|
|
|
|
59
|
|
|
self.valid_fluxes = np.random.uniform(low=0.5, high=1.5, size=shape) |
60
|
|
|
self.valid_flux_uncertainties = np.random.uniform(low=0.5, high=1.5, |
61
|
|
|
size=shape) |
62
|
|
|
|
63
|
|
|
def runTest(self): |
64
|
|
|
None |
65
|
|
|
|
66
|
|
|
def get_model(self, **kwargs): |
67
|
|
|
return model.BaseCannonModel( |
68
|
|
|
self.valid_training_labels, self.valid_fluxes, |
69
|
|
|
self.valid_flux_uncertainties, **kwargs) |
70
|
|
|
|
71
|
|
|
def test_repr(self): |
72
|
|
|
self.runTest() # Just for that 100%, baby. |
73
|
|
|
m = self.get_model() |
74
|
|
|
print("{0} {1}".format(m.__str__(), m.__repr__())) |
75
|
|
|
|
76
|
|
|
def test_get_dispersion(self): |
77
|
|
|
m = self.get_model() |
78
|
|
|
self.assertSequenceEqual( |
79
|
|
|
tuple(m.dispersion), |
80
|
|
|
tuple(np.arange(self.valid_fluxes.shape[1]))) |
81
|
|
|
|
82
|
|
|
def test_set_dispersion(self): |
83
|
|
|
m = self.get_model() |
84
|
|
|
for item in (None, False, True): |
85
|
|
|
# Incorrect data type (not an iterable) |
86
|
|
|
with self.assertRaises(TypeError): |
87
|
|
|
m.dispersion = item |
88
|
|
|
|
89
|
|
|
for item in ("", {}, [], (), set()): |
90
|
|
|
# These are iterable but have the wrong lengths. |
91
|
|
|
with self.assertRaises(ValueError): |
92
|
|
|
m.dispersion = item |
93
|
|
|
|
94
|
|
|
with self.assertRaises(ValueError): |
95
|
|
|
m.dispersion = [3,4,2,1] |
96
|
|
|
|
97
|
|
|
# These should work. |
98
|
|
|
m.dispersion = 10 + np.arange(self.valid_fluxes.shape[1]) |
99
|
|
|
m.dispersion = -100 + np.arange(self.valid_fluxes.shape[1]) |
100
|
|
|
m.dispersion = 520938.4 + np.arange(self.valid_fluxes.shape[1]) |
101
|
|
|
|
102
|
|
|
# Disallow non-finite numbers. |
103
|
|
|
with self.assertRaises(ValueError): |
104
|
|
|
d = np.arange(self.valid_fluxes.shape[1], dtype=float) |
105
|
|
|
d[0] = np.nan |
106
|
|
|
m.dispersion = d |
107
|
|
|
|
108
|
|
|
with self.assertRaises(ValueError): |
109
|
|
|
d = np.arange(self.valid_fluxes.shape[1], dtype=float) |
110
|
|
|
d[0] = np.inf |
111
|
|
|
m.dispersion = d |
112
|
|
|
|
113
|
|
|
with self.assertRaises(ValueError): |
114
|
|
|
d = np.arange(self.valid_fluxes.shape[1], dtype=float) |
115
|
|
|
d[0] = -np.inf |
116
|
|
|
m.dispersion = d |
117
|
|
|
|
118
|
|
|
# Disallow non-float like things. |
119
|
|
|
with self.assertRaises(ValueError): |
120
|
|
|
d = np.array([""] * self.valid_fluxes.shape[1]) |
121
|
|
|
m.dispersion = d |
122
|
|
|
|
123
|
|
|
with self.assertRaises(ValueError): |
124
|
|
|
d = np.array([None] * self.valid_fluxes.shape[1]) |
125
|
|
|
m.dispersion = d |
126
|
|
|
|
127
|
|
|
def test_get_training_data(self): |
128
|
|
|
m = self.get_model() |
129
|
|
|
self.assertIsNotNone(m.training_labels) |
130
|
|
|
self.assertIsNotNone(m.training_fluxes) |
131
|
|
|
self.assertIsNotNone(m.training_flux_uncertainties) |
132
|
|
|
|
133
|
|
|
def test_invalid_label_names(self): |
134
|
|
|
m = self.get_model() |
135
|
|
|
for character in m._forbidden_label_characters: |
136
|
|
|
|
137
|
|
|
invalid_labels = [] + list(m.labels_available) |
138
|
|
|
invalid_labels[0] = "HELLO_{}".format(character) |
139
|
|
|
|
140
|
|
|
N_stars = len(self.valid_training_labels) |
141
|
|
|
N_labels = len(invalid_labels) |
142
|
|
|
invalid_training_labels = np.rec.array( |
143
|
|
|
np.random.uniform(size=(N_stars, N_labels)), |
144
|
|
|
dtype=[(l, '<f8') for l in invalid_labels]) |
145
|
|
|
|
146
|
|
|
m = model.BaseCannonModel(invalid_training_labels, |
147
|
|
|
self.valid_fluxes, self.valid_flux_uncertainties, |
148
|
|
|
live_dangerously=True) |
149
|
|
|
|
150
|
|
|
m._forbidden_label_characters = None |
151
|
|
|
self.assertTrue(m._verify_labels_available()) |
152
|
|
|
|
153
|
|
|
with self.assertRaises(ValueError): |
154
|
|
|
m = model.BaseCannonModel(invalid_training_labels, |
155
|
|
|
self.valid_fluxes, self.valid_flux_uncertainties) |
156
|
|
|
|
157
|
|
|
def test_get_label_vector(self): |
158
|
|
|
m = self.get_model() |
159
|
|
|
m.label_vector = "A + B + C" |
160
|
|
|
self.assertEqual(m.pixel_label_vector(1), [ |
161
|
|
|
[("A", 1)], |
162
|
|
|
[("B", 1)], |
163
|
|
|
[("C", 1)] |
164
|
|
|
]) |
165
|
|
|
|
166
|
|
|
def test_set_label_vector(self): |
167
|
|
|
m = self.get_model() |
168
|
|
|
label_vector = "A + B + C + D + E" |
169
|
|
|
|
170
|
|
|
m.label_vector = label_vector |
171
|
|
|
self.assertEqual(m.label_vector, utils.parse_label_vector(label_vector)) |
172
|
|
|
self.assertEqual("1 + A + B + C + D + E", m.human_readable_label_vector) |
173
|
|
|
|
174
|
|
|
with self.assertRaises(ValueError): |
175
|
|
|
m.label_vector = "A + G" |
176
|
|
|
|
177
|
|
|
m.label_vector = None |
178
|
|
|
self.assertIsNone(m.label_vector) |
179
|
|
|
|
180
|
|
|
for item in (True, False, 0, 1.0): |
181
|
|
|
with self.assertRaises(TypeError): |
182
|
|
|
m.label_vector = item |
183
|
|
|
|
184
|
|
|
def test_label_getsetters(self): |
185
|
|
|
|
186
|
|
|
m = self.get_model() |
187
|
|
|
self.assertEqual((), m.labels) |
188
|
|
|
|
189
|
|
|
m.label_vector = "A + B + C" |
190
|
|
|
self.assertSequenceEqual(("A", "B", "C"), tuple(m.labels)) |
191
|
|
|
|
192
|
|
|
with self.assertRaises(AttributeError): |
193
|
|
|
m.labels = None |
194
|
|
|
|
195
|
|
|
def test_inheritence(self): |
196
|
|
|
m = self.get_model() |
197
|
|
|
m.label_vector = "A + B + C" |
198
|
|
|
with self.assertRaises(NotImplementedError): |
199
|
|
|
m.train() |
200
|
|
|
m._trained = True |
201
|
|
|
with self.assertRaises(NotImplementedError): |
202
|
|
|
m.predict() |
203
|
|
|
with self.assertRaises(NotImplementedError): |
204
|
|
|
m.fit() |
205
|
|
|
|
206
|
|
|
def test_get_label_indices(self): |
207
|
|
|
m = self.get_model() |
208
|
|
|
m.label_vector = "A^5 + A^2 + B^3 + C + C*D + D^6" |
209
|
|
|
self.assertEqual([1, 2, 3, 5], m._get_lowest_order_label_indices()) |
210
|
|
|
|
211
|
|
|
def test_data_verification(self): |
212
|
|
|
m = self.get_model() |
213
|
|
|
m._training_fluxes = m._training_fluxes.reshape(1, -1) |
214
|
|
|
with self.assertRaises(ValueError): |
215
|
|
|
m._verify_training_data() |
216
|
|
|
|
217
|
|
|
m._training_flux_uncertainties = \ |
218
|
|
|
m._training_flux_uncertainties.reshape(m._training_fluxes.shape) |
219
|
|
|
with self.assertRaises(ValueError): |
220
|
|
|
m._verify_training_data() |
221
|
|
|
|
222
|
|
|
with self.assertRaises(ValueError): |
223
|
|
|
m = self.get_model(dispersion=[1,2,3]) |
224
|
|
|
|
225
|
|
|
N_labels = 2 |
226
|
|
|
N_stars, N_pixels = self.valid_fluxes.shape |
227
|
|
|
invalid_training_labels = np.random.uniform( |
228
|
|
|
low=0.5, high=1.5, size=(N_stars, N_labels)) |
229
|
|
|
with self.assertRaises(ValueError): |
230
|
|
|
m = model.BaseCannonModel(invalid_training_labels, |
231
|
|
|
self.valid_fluxes, self.valid_flux_uncertainties) |
232
|
|
|
|
233
|
|
|
def test_labels_array(self): |
234
|
|
|
m = self.get_model() |
235
|
|
|
m.label_vector = "A^2 + B^3 + C^5" |
236
|
|
|
|
237
|
|
|
for i, label in enumerate("ABC"): |
238
|
|
|
foo = m.labels_array[:, i] |
239
|
|
|
bar = np.array(m.training_labels[label]).flatten() |
240
|
|
|
self.assertTrue(np.allclose(foo, bar)) |
241
|
|
|
|
242
|
|
|
with self.assertRaises(AttributeError): |
243
|
|
|
m.labels_array = None |
244
|
|
|
|
245
|
|
|
def test_label_vector_array(self): |
246
|
|
|
m = self.get_model() |
247
|
|
|
m.label_vector = "A^2.0 + B^3.4 + C^5" |
248
|
|
|
m.pivots = np.zeros(len(m.labels)) |
249
|
|
|
|
250
|
|
|
self.assertTrue(np.allclose( |
251
|
|
|
np.array(m.training_labels["A"]**2).flatten(), |
252
|
|
|
m.label_vector_array[1], |
253
|
|
|
)) |
254
|
|
|
self.assertTrue(np.allclose( |
255
|
|
|
np.array(m.training_labels["B"]**3.4).flatten(), |
256
|
|
|
m.label_vector_array[2] |
257
|
|
|
)) |
258
|
|
|
self.assertTrue(np.allclose( |
259
|
|
|
np.array(m.training_labels["C"]**5).flatten(), |
260
|
|
|
m.label_vector_array[3] |
261
|
|
|
)) |
262
|
|
|
|
263
|
|
|
m.training_labels["A"][0] = np.nan |
264
|
|
|
m.label_vector_array # For Coveralls. |
265
|
|
|
|
266
|
|
|
kwd1 = { |
267
|
|
|
"A": float(m.training_labels["A"][1]), |
268
|
|
|
"B": float(m.training_labels["B"][1]), |
269
|
|
|
"C": float(m.training_labels["C"][1]) |
270
|
|
|
} |
271
|
|
|
kwd2 = { |
272
|
|
|
"A": [m.training_labels["A"][1][0]], |
273
|
|
|
"B": [m.training_labels["B"][1][0]], |
274
|
|
|
"C": [m.training_labels["C"][1][0]] |
275
|
|
|
} |
276
|
|
|
self.assertTrue(np.allclose( |
277
|
|
|
model._build_label_vector_rows(m.label_vector, kwd1), |
278
|
|
|
model._build_label_vector_rows(m.label_vector, kwd2) |
279
|
|
|
)) |
280
|
|
|
|
281
|
|
|
def test_format_input_labels(self): |
282
|
|
|
m = self.get_model() |
283
|
|
|
m.label_vector = "A^2.0 + B^3.4 + C^5" |
284
|
|
|
|
285
|
|
|
kwds = {"A": [5], "B": [3], "C": [0.43]} |
286
|
|
|
for k, v in m._format_input_labels(None, **kwds).items(): |
287
|
|
|
self.assertEqual(kwds[k], v) |
288
|
|
|
for k, v in m._format_input_labels([5, 3, 0.43]).items(): |
289
|
|
|
self.assertEqual(kwds[k], v) |
290
|
|
|
|
291
|
|
|
kwds_input = {k: v[0] for k, v in kwds.items() } |
292
|
|
|
for k, v in m._format_input_labels(None, **kwds_input).items(): |
293
|
|
|
self.assertEqual(kwds[k], v) |
294
|
|
|
|
295
|
|
|
|
296
|
|
|
|
297
|
|
|
|
298
|
|
|
# The trained attributes and I/O functions will be tested in the sub-classes |
299
|
|
|
|