|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
""" |
|
5
|
|
|
A compressed sensing edition of The Cannon. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
from __future__ import (division, print_function, absolute_import, |
|
9
|
|
|
unicode_literals) |
|
10
|
|
|
|
|
11
|
|
|
__all__ = ["LassoCannonModel"] |
|
12
|
|
|
|
|
13
|
|
|
import logging |
|
14
|
|
|
import numpy as np |
|
15
|
|
|
import scipy.optimize as op |
|
16
|
|
|
|
|
17
|
|
|
from . import (model, utils) |
|
18
|
|
|
|
|
19
|
|
|
logger = logging.getLogger(__name__) |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
class LassoCannonModel(model.BaseCannonModel): |
|
23
|
|
|
""" |
|
24
|
|
|
A compressed sensing edition of The Cannon model for the estimation of |
|
25
|
|
|
arbitrary stellar labels with regularized complexity. |
|
26
|
|
|
|
|
27
|
|
|
:param labels: |
|
28
|
|
|
A table with columns as labels, and stars as rows. |
|
29
|
|
|
|
|
30
|
|
|
:type labels: |
|
31
|
|
|
:class:`~astropy.table.Table` or numpy structured array |
|
32
|
|
|
|
|
33
|
|
|
:param fluxes: |
|
34
|
|
|
An array of fluxes for stars in the training set, given as shape |
|
35
|
|
|
`(num_stars, num_pixels)`. The `num_stars` should match the number of |
|
36
|
|
|
rows in `labels`. |
|
37
|
|
|
|
|
38
|
|
|
:type fluxes: |
|
39
|
|
|
:class:`np.ndarray` |
|
40
|
|
|
|
|
41
|
|
|
:param flux_uncertainties: |
|
42
|
|
|
An array of 1-sigma flux uncertainties for stars in the training set, |
|
43
|
|
|
The shape of the `flux_uncertainties` should match `fluxes`. |
|
44
|
|
|
|
|
45
|
|
|
:type flux_uncertainties: |
|
46
|
|
|
:class:`np.ndarray` |
|
47
|
|
|
|
|
48
|
|
|
:param dispersion: [optional] |
|
49
|
|
|
The dispersion values corresponding to the given pixels. If provided, |
|
50
|
|
|
this should have length `num_pixels`. |
|
51
|
|
|
|
|
52
|
|
|
:param live_dangerously: [optional] |
|
53
|
|
|
If enabled then no checks will be made on the label names, prohibiting |
|
54
|
|
|
the user to input human-readable forms of the label vector. |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
_descriptive_attributes = ["_label_vector"] |
|
58
|
|
|
_trained_attributes = ["_coefficients", "_scatter"] |
|
59
|
|
|
_data_attributes = \ |
|
60
|
|
|
["training_labels", "training_fluxes", "training_flux_uncertainties"] |
|
61
|
|
|
|
|
62
|
|
|
def __init__(self, *args, **kwargs): |
|
63
|
|
|
super(LassoCannonModel, self).__init__(*args, **kwargs) |
|
64
|
|
|
|
|
65
|
|
|
|
|
66
|
|
|
# This class has additional attributes. |
|
67
|
|
|
# label_complexity? |
|
68
|
|
|
# regularization_behaviour? |
|
69
|
|
|
# etc... |
|
70
|
|
|
|
|
71
|
|
|
@model.requires_label_vector |
|
72
|
|
|
def train(self, **kwargs): |
|
73
|
|
|
raise NotImplementedError |
|
74
|
|
|
|
|
75
|
|
|
|
|
76
|
|
|
@model.requires_training_wheels |
|
77
|
|
|
def predict(self, labels=None, **labels_as_kwargs): |
|
78
|
|
|
raise NotImplementedError |
|
79
|
|
|
|
|
80
|
|
|
|
|
81
|
|
|
@model.requires_training_wheels |
|
82
|
|
|
def fit(self, fluxes, flux_uncertainties, **kwargs): |
|
83
|
|
|
raise NotImplementedError |
|
84
|
|
|
|
|
85
|
|
|
|
|
86
|
|
|
|