1
|
|
|
""" |
2
|
|
|
Plot some quality metrics for gridsearch models. |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
import matplotlib |
6
|
|
|
matplotlib.rcParams["text.usetex"] = True |
7
|
|
|
import matplotlib.pyplot as plt |
8
|
|
|
from matplotlib.ticker import MaxNLocator |
9
|
|
|
import numpy as np |
10
|
|
|
import logging |
11
|
|
|
|
12
|
|
|
from glob import glob |
13
|
|
|
from six.moves import cPickle as pickle |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def plot_test_scalar_metrics(metric_function, filenames, metric_label=None, |
18
|
|
|
debug=True, **kwargs): |
19
|
|
|
|
20
|
|
|
Lambdas = [] |
21
|
|
|
scale_factors = [] |
22
|
|
|
metrics = [] |
23
|
|
|
|
24
|
|
|
for filename in filenames: |
25
|
|
|
|
26
|
|
|
try: |
27
|
|
|
_ = filename.split("-") |
28
|
|
|
scale_factor = float(_[1]) |
29
|
|
|
log10_Lambda = float(_[2].split(".model")[0]) |
30
|
|
|
|
31
|
|
|
except: |
32
|
|
|
print("Skipping filename {}".format(filename)) |
33
|
|
|
continue |
34
|
|
|
|
35
|
|
|
with open(filename, "rb") as fp: |
36
|
|
|
contents = pickle.load(fp, encoding="latin-1") |
37
|
|
|
|
38
|
|
|
snrs, high_snr_expected, high_snr_inferred, \ |
39
|
|
|
differences_expected, differences_inferred, \ |
40
|
|
|
single_visit_inferred = contents |
41
|
|
|
|
42
|
|
|
# Calculate the metric. |
43
|
|
|
try: |
44
|
|
|
metric = metric_function(*contents) |
45
|
|
|
metric = float(metric) # Must be a float |
46
|
|
|
|
47
|
|
|
except: |
48
|
|
|
logging.exception("Failed to calculate metric for {}".format(filename)) |
49
|
|
|
if debug: raise |
50
|
|
|
|
51
|
|
|
else: |
52
|
|
|
|
53
|
|
|
metrics.append(metric) |
54
|
|
|
Lambdas.append(10**log10_Lambda) |
55
|
|
|
scale_factors.append(scale_factor) |
56
|
|
|
|
57
|
|
|
metrics = np.array(metrics) |
58
|
|
|
Lambdas = np.array(Lambdas) |
59
|
|
|
scale_factors = np.array(scale_factors) |
60
|
|
|
|
61
|
|
|
# Make the figure |
62
|
|
|
fig, ax = plt.subplots() |
63
|
|
|
|
64
|
|
|
# scale factors are non-linear, so lets show them as indices then we will |
65
|
|
|
# adjust the y-ticks and labels as necessary |
66
|
|
|
unique_scale_factors = list(np.sort(np.unique(scale_factors))) |
67
|
|
|
scale_factor_indices \ |
68
|
|
|
= np.array([unique_scale_factors.index(_) for _ in scale_factors]) |
69
|
|
|
|
70
|
|
|
# Scale the points so that the best metric has s=250. |
71
|
|
|
unity = 250 * min(metrics) |
72
|
|
|
scat = ax.scatter(Lambdas, scale_factor_indices, c=metrics, s=unity/metrics, |
73
|
|
|
cmap=plt.cm.plasma, vmin=0.04, vmax=0.11, **kwargs) |
74
|
|
|
ax.set_yticks(np.arange(len(unique_scale_factors))) |
75
|
|
|
ax.set_yticklabels([r"${0:.1f}$".format(_) for _ in unique_scale_factors]) |
76
|
|
|
ax.set_ylim(-1, len(unique_scale_factors)) |
77
|
|
|
|
78
|
|
|
# Draw a circle around the best three. |
79
|
|
|
#for index, color in zip(np.argsort(metrics), ("k", )):#"#AAAAAA", "#BBBBBB", "#CCCCCC", "#DDDDDD")): |
80
|
|
|
# ax.scatter([Lambdas[index]], [scale_factor_indices[index]], |
81
|
|
|
# s=450, edgecolor=color, facecolor="w", zorder=-1, linewidths=2) |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
ax.semilogx() |
85
|
|
|
|
86
|
|
|
for _ in np.arange(len(unique_scale_factors) - 1): |
87
|
|
|
ax.axhline(_ + 0.5, c="#EEEEEE", zorder=-1) |
88
|
|
|
|
89
|
|
|
cbar = plt.colorbar(scat) |
90
|
|
|
cbar.set_label(metric_label or r"Metric") |
91
|
|
|
cbar.set_ticks([0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11]) |
92
|
|
|
|
93
|
|
|
ax.set_xlabel(r"$\rm{Regularization},$ $\Lambda$") |
94
|
|
|
ax.set_ylabel(r"$\rm{Scale}$ $\rm{factor},$ $f$") |
95
|
|
|
ax.yaxis.set_tick_params(width=0) |
96
|
|
|
|
97
|
|
|
fig.tight_layout() |
98
|
|
|
return fig |
99
|
|
|
|
100
|
|
|
if __name__ == "__main__": |
101
|
|
|
|
102
|
|
|
snapshot_filenames = glob("../*.individual_visits") |
103
|
|
|
|
104
|
|
|
metric_labels = [ |
105
|
|
|
r"$\rm{median}\{|T_{\rm eff,combined} - T_{\rm eff,individual}|\}$", |
106
|
|
|
r"$\rm{median}\{|\log{g}_{\rm combined} - \log{g}_{\rm individual}|\}$", |
107
|
|
|
r"$\rm{median}\{|[\rm{Al}/\rm{H}]_{\rm combined} - [\rm{Al}/\rm{H}]_{\rm individual}|\}$", # AL |
108
|
|
|
r"$\rm{median}\{|[\rm{Ca}/\rm{H}]_{\rm combined} - [\rm{Ca}/\rm{H}]_{\rm individual}|\}$", #'CA', |
109
|
|
|
r"$\rm{median}\{|[\rm{C}/\rm{H}]_{\rm combined} - [\rm{C}/\rm{H}]_{\rm individual}|\}$", #'C', |
110
|
|
|
r"$\rm{median}\{|[\rm{Fe}/\rm{H}]_{\rm combined} - [\rm{Fe}/\rm{H}]_{\rm individual}|\}$", #'FE', |
111
|
|
|
r"$\rm{median}\{|[\rm{K}/\rm{H}]_{\rm combined} - [\rm{K}/\rm{H}]_{\rm individual}|\}$", #'K', |
112
|
|
|
r"$\rm{median}\{|[\rm{Mg}/\rm{H}]_{\rm combined} - [\rm{Mg}/\rm{H}]_{\rm individual}|\}$", #'MG', |
113
|
|
|
r"$\rm{median}\{|[\rm{Mn}/\rm{H}]_{\rm combined} - [\rm{Mn}/\rm{H}]_{\rm individual}|\}$", #'MN', |
114
|
|
|
r"$\rm{median}\{|[\rm{Na}/\rm{H}]_{\rm combined} - [\rm{Na}/\rm{H}]_{\rm individual}|\}$", #'NA', |
115
|
|
|
r"$\rm{median}\{|[\rm{Ni}/\rm{H}]_{\rm combined} - [\rm{Ni}/\rm{H}]_{\rm individual}|\}$", #'NI', |
116
|
|
|
r"$\rm{median}\{|[\rm{N}/\rm{H}]_{\rm combined} - [\rm{N}/\rm{H}]_{\rm individual}|\}$", #'N', |
117
|
|
|
r"$\rm{median}\{|[\rm{O}/\rm{H}]_{\rm combined} - [\rm{O}/\rm{H}]_{\rm individual}|\}$", #'O', |
118
|
|
|
r"$\rm{median}\{|[\rm{Si}/\rm{H}]_{\rm combined} - [\rm{Si}/\rm{H}]_{\rm individual}|\}$", #'SI', |
119
|
|
|
r"$\rm{median}\{|[\rm{S}/\rm{H}]_{\rm combined} - [\rm{S}/\rm{H}]_{\rm individual}|\}$", #'S', |
120
|
|
|
r"$\rm{median}\{|[\rm{Ti}/\rm{H}]_{\rm combined} - [\rm{Ti}/\rm{H}]_{\rm individual}|\}$", #'TI', |
121
|
|
|
r"$\rm{median}\{|[\rm{V}/\rm{H}]_{\rm combined} - [\rm{V}/\rm{H}]_{\rm individual}|\}$", #'V' |
122
|
|
|
] |
123
|
|
|
label_names = [ |
124
|
|
|
"TEFF", |
125
|
|
|
"LOGG", |
126
|
|
|
"AL", |
127
|
|
|
"CA", |
128
|
|
|
"C", |
129
|
|
|
"FE", |
130
|
|
|
"K", |
131
|
|
|
"MG", |
132
|
|
|
"MN", |
133
|
|
|
"NA", |
134
|
|
|
"NI", |
135
|
|
|
"N", |
136
|
|
|
"O", |
137
|
|
|
"SI", |
138
|
|
|
"S", |
139
|
|
|
"TI", |
140
|
|
|
"V" |
141
|
|
|
] |
142
|
|
|
|
143
|
|
|
""" |
144
|
|
|
figures = [] |
145
|
|
|
for i, (metric_label, label_name) in enumerate(zip(metric_labels, label_names)): |
146
|
|
|
|
147
|
|
|
def metric(snrs, high_snr_expected, high_snr_inferred, |
148
|
|
|
differences_expected, differences_inferred, single_visit_inferred): |
149
|
|
|
return np.sum(np.abs(differences_expected[:, i])) |
150
|
|
|
|
151
|
|
|
fig = plot_test_scalar_metrics(metric, snapshot_filenames, metric_label) |
152
|
|
|
|
153
|
|
|
fig.savefig("gs-mad-{0}.png".format(label_name), dpi=300) |
154
|
|
|
""" |
155
|
|
|
def metric(snrs, high_snr_expected, high_snr_inferred, |
156
|
|
|
differences_expected, differences_inferred, single_visit_inferred): |
157
|
|
|
return np.median(np.abs(differences_expected[:, 2:])) |
158
|
|
|
|
159
|
|
|
metric_label = r"${\rm median}\left(\left|[\rm{X}/\rm{H}]_{\rm combined} - [\rm{X}/\rm{H}]_{\rm individual}\right|\right)$" |
160
|
|
|
fig = plot_test_scalar_metrics(metric, snapshot_filenames, metric_label) |
161
|
|
|
fig.savefig("gs-mad-all-elements.pdf", dpi=300) |
162
|
|
|
|
163
|
|
|
raise a |