|
1
|
|
|
|
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
Plot first-order element coefficients as a function of lambda. |
|
5
|
|
|
""" |
|
6
|
|
|
|
|
7
|
|
|
|
|
8
|
|
|
import matplotlib.pyplot as plt |
|
9
|
|
|
#plt.rcParams["text.usetex"] = True |
|
10
|
|
|
#plt.rcParams["text.latex.preamble"] = [r"\usepackage{amsmath}"] |
|
11
|
|
|
import matplotlib.colors as cm |
|
12
|
|
|
import numpy as np |
|
13
|
|
|
import os |
|
14
|
|
|
from scipy import optimize as op |
|
15
|
|
|
from matplotlib.ticker import MaxNLocator |
|
16
|
|
|
|
|
17
|
|
|
import colormaps as cmaps |
|
18
|
|
|
|
|
19
|
|
|
import AnniesLasso as tc |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
def _show_xlim_changes(fig, diag=0.015, xtol=0): |
|
23
|
|
|
|
|
24
|
|
|
N = len(fig.axes) |
|
25
|
|
|
if 2 > N: return |
|
26
|
|
|
for i, ax in enumerate(fig.axes): |
|
27
|
|
|
|
|
28
|
|
|
if i > 0: |
|
29
|
|
|
# Put LHS break marks in. |
|
30
|
|
|
kwargs = dict(transform=ax.transAxes, color="k", clip_on=False) |
|
31
|
|
|
ax.plot((-diag, +diag), ( - diag, + diag), **kwargs) |
|
32
|
|
|
ax.plot((-diag, +diag), (1 - diag, 1 + diag), **kwargs) |
|
33
|
|
|
|
|
34
|
|
|
if i != N - 1: |
|
35
|
|
|
# Put RHS break marks in. |
|
36
|
|
|
kwargs = dict(transform=ax.transAxes, color="k", clip_on=False) |
|
37
|
|
|
ax.plot((1 - diag, 1 + diag), (1 - diag, 1 + diag), **kwargs) |
|
38
|
|
|
ax.plot((1 - diag, 1 + diag), ( - diag, + diag), **kwargs) |
|
39
|
|
|
|
|
40
|
|
|
# Control spines depending on which axes it is |
|
41
|
|
|
if i == 0: |
|
42
|
|
|
ax.yaxis.tick_left() |
|
43
|
|
|
ax.spines["right"].set_visible(False) |
|
44
|
|
|
ax.set_xlim(ax.get_xlim()[0], ax.get_xlim()[1] - xtol) |
|
45
|
|
|
|
|
46
|
|
|
elif i > 0 and i != N - 1: |
|
47
|
|
|
ax.set_xlim(ax.get_xlim()[0] + xtol, ax.get_xlim()[1] - xtol) |
|
48
|
|
|
ax.yaxis.set_tick_params(size=0) |
|
49
|
|
|
ax.tick_params(labelleft='off') |
|
50
|
|
|
ax.spines["left"].set_visible(False) |
|
51
|
|
|
ax.spines["right"].set_visible(False) |
|
52
|
|
|
|
|
53
|
|
|
else: |
|
54
|
|
|
ax.set_xlim(ax.get_xlim()[0] + xtol, ax.get_xlim()[1]) |
|
55
|
|
|
ax.yaxis.tick_right() |
|
56
|
|
|
ax.tick_params(labelleft='off') |
|
57
|
|
|
ax.spines["left"].set_visible(False) |
|
58
|
|
|
|
|
59
|
|
|
return None |
|
60
|
|
|
|
|
61
|
|
|
|
|
62
|
|
|
|
|
63
|
|
|
def plot_first_order_derivatives(model, label_names=None, scaled=True, |
|
64
|
|
|
show_clipped_region=False, colors=None, zorders=None, |
|
65
|
|
|
clip_less_than=None, label_wavelengths=None, latex_label_names=None, |
|
66
|
|
|
wavelength_regions=None, show_legend=True, **kwargs): |
|
67
|
|
|
|
|
68
|
|
|
if wavelength_regions is None: |
|
69
|
|
|
wavelength_regions = [(model.dispersion[0], model.dispersion[-1])] |
|
70
|
|
|
|
|
71
|
|
|
if label_names is None: |
|
72
|
|
|
label_names = model.vectorizer.label_names |
|
73
|
|
|
|
|
74
|
|
|
if latex_label_names is None: |
|
75
|
|
|
latex_label_names = {} |
|
76
|
|
|
|
|
77
|
|
|
fig, axes = plt.subplots(1, len(wavelength_regions), figsize=(15, 3.5)) |
|
78
|
|
|
|
|
79
|
|
|
if len(label_names) > 1: |
|
80
|
|
|
#cmap = cm.LinearSegmentedColormap.from_list( |
|
81
|
|
|
# "inferno", cmaps._inferno_data, len(label_names)) |
|
82
|
|
|
cmap = plt.cm.get_cmap("Set1", len(label_names)) |
|
83
|
|
|
else: |
|
84
|
|
|
cmap = lambda x: "k" |
|
85
|
|
|
|
|
86
|
|
|
if colors is not None: |
|
87
|
|
|
cmap = lambda x: colors[x % len(colors)] |
|
88
|
|
|
|
|
89
|
|
|
axes = np.array(axes).flatten() |
|
90
|
|
|
|
|
91
|
|
|
scales = [] |
|
92
|
|
|
for i, label_name in enumerate(label_names): |
|
93
|
|
|
|
|
94
|
|
|
# First order derivatives are always indexed first. |
|
95
|
|
|
index = 1 + model.vectorizer.label_names.index(label_name) |
|
96
|
|
|
y = model.theta[:, index] |
|
97
|
|
|
#y = y |
|
98
|
|
|
if clip_less_than is not None: |
|
99
|
|
|
y[np.abs(y) < clip_less_than] = 0 |
|
100
|
|
|
|
|
101
|
|
|
scale = np.nanmax(np.abs(y)) if scaled else 1. |
|
102
|
|
|
y = y / scale |
|
103
|
|
|
|
|
104
|
|
|
c = cmap(i) |
|
105
|
|
|
zorder = 1 |
|
106
|
|
|
if zorders is not None: zorder = zorders[i] |
|
107
|
|
|
for ax in axes: |
|
108
|
|
|
ax.plot(model.dispersion, y, c=c, zorder=zorder, |
|
109
|
|
|
label=latex_label_names.get(label_name, label_name)) |
|
110
|
|
|
|
|
111
|
|
|
if clip_less_than is not None and show_clipped_region: |
|
112
|
|
|
ax.axhspan(-clip_less_than/scale, +clip_less_than/scale, |
|
113
|
|
|
xmin=-1, xmax=+2, |
|
114
|
|
|
facecolor=c, edgecolor=c, zorder=-100, alpha=0.1) |
|
115
|
|
|
|
|
116
|
|
|
|
|
117
|
|
|
# Plot any wavelengths. |
|
118
|
|
|
if label_wavelengths is not None: |
|
119
|
|
|
label_yvalue = 1.0 |
|
120
|
|
|
for label_name, wavelengths in label_wavelengths.items(): |
|
121
|
|
|
try: |
|
122
|
|
|
color = cmap(label_names.index(label_name)) |
|
123
|
|
|
label = None |
|
124
|
|
|
except (IndexError, ValueError): |
|
125
|
|
|
color = 'k' |
|
126
|
|
|
#for ax in axes: |
|
127
|
|
|
# ax.plot([model.dispersion[0] - 1], [0], c=color, label=latex_label_names.get(label_name, label_name)) |
|
128
|
|
|
|
|
129
|
|
|
for ax in axes: |
|
130
|
|
|
ax.plot(wavelengths, label_yvalue * np.ones_like(wavelengths), |
|
131
|
|
|
"|", markersize=20, markeredgewidth=2, c=color) |
|
132
|
|
|
|
|
133
|
|
|
for ax, wavelength_region in zip(axes, wavelength_regions): |
|
134
|
|
|
ax.set_xlim(wavelength_region) |
|
135
|
|
|
if scaled: |
|
136
|
|
|
ax.set_ylim(-1.2, 1.2) |
|
137
|
|
|
|
|
138
|
|
|
if ax.is_first_col(): |
|
139
|
|
|
if scaled: |
|
140
|
|
|
ax.set_ylabel(r"$\theta/{\max|\theta|}$") |
|
141
|
|
|
else: |
|
142
|
|
|
ax.set_ylabel(r"$\theta$") |
|
143
|
|
|
else: |
|
144
|
|
|
ax.set_yticklabels([]) |
|
145
|
|
|
|
|
146
|
|
|
ax.xaxis.set_major_locator(MaxNLocator(4)) |
|
147
|
|
|
|
|
148
|
|
|
xlabel = r"$\lambda$ $({\rm\AA})$" |
|
149
|
|
|
if len(wavelength_regions) == 1: |
|
150
|
|
|
ax.set_xlabel(xlabel) |
|
151
|
|
|
|
|
152
|
|
|
else: |
|
153
|
|
|
_show_xlim_changes(fig) |
|
154
|
|
|
|
|
155
|
|
|
ax = fig.add_axes([0, 0, 1, 1]) |
|
156
|
|
|
ax.set_axis_off() |
|
157
|
|
|
ax.set_xlim(0, 1) |
|
158
|
|
|
ax.set_ylim(0, 1) |
|
159
|
|
|
ax.text(0.5, 0.05, xlabel, rotation='horizontal', |
|
160
|
|
|
horizontalalignment='center', verticalalignment='center') |
|
161
|
|
|
|
|
162
|
|
|
fig.tight_layout() |
|
163
|
|
|
|
|
164
|
|
|
if show_legend: |
|
165
|
|
|
axes[0].legend(loc="upper right", ncol=kwargs.get("legend_ncol", len(label_names) % 7), frameon=False) |
|
166
|
|
|
fig.subplots_adjust(wspace=0.01, bottom=0.20) |
|
167
|
|
|
|
|
168
|
|
|
return fig |
|
169
|
|
|
|
|
170
|
|
|
|
|
171
|
|
|
|
|
172
|
|
|
|
|
173
|
|
|
|
|
174
|
|
|
|
|
175
|
|
|
|
|
176
|
|
|
|
|
177
|
|
|
|
|
178
|
|
|
|
|
179
|
|
|
if __name__ == "__main__": |
|
180
|
|
|
|
|
181
|
|
|
|
|
182
|
|
|
PATH, CATALOG, FILE_FORMAT = ("/Volumes/My Book/surveys/apogee/", |
|
183
|
|
|
"apogee-rg.fits", "apogee-rg-custom-normalization-{}.memmap") |
|
184
|
|
|
|
|
185
|
|
|
model = tc.load_model("gridsearch-20.0-3.0.model") |
|
186
|
|
|
model._dispersion = np.memmap( |
|
187
|
|
|
os.path.join(PATH, FILE_FORMAT).format("dispersion"), |
|
188
|
|
|
mode="c", dtype=float) |
|
189
|
|
|
|
|
190
|
|
|
|
|
191
|
|
|
|
|
192
|
|
|
fig = plot_first_order_derivatives(model, |
|
193
|
|
|
label_names=["AL_H", "S_H", "K_H"], |
|
194
|
|
|
clip_less_than=np.std(np.abs(model.theta[:, 6])), |
|
195
|
|
|
label_wavelengths={ |
|
196
|
|
|
"AL_H": [16723.524113765838, 16767.938194147067], |
|
197
|
|
|
"K_H": [15172.521340566429], |
|
198
|
|
|
"Missing": [15235.7, 16755.1] |
|
199
|
|
|
}, |
|
200
|
|
|
latex_label_names={ |
|
201
|
|
|
"AL_H": r"$[\rm{Al}/\rm{H}]$", |
|
202
|
|
|
"K_H": r"$[\rm{K}/\rm{H}]$", |
|
203
|
|
|
"S_H": r"$[\rm{S}/\rm{H}]$", |
|
204
|
|
|
"Missing": "Missing/Unknown (Shetrone+ 2015)" |
|
205
|
|
|
}, |
|
206
|
|
|
show_clipped_region=True, |
|
207
|
|
|
wavelength_regions=[ |
|
208
|
|
|
(15152.465463818111, 15400), |
|
209
|
|
|
(16601, 16800), |
|
210
|
|
|
]) |
|
211
|
|
|
# Show first figure. |
|
212
|
|
|
fig.savefig("papers/sparse-first-order-coefficients.pdf", dpi=300) |
|
213
|
|
|
fig.savefig("papers/sparse-first-order-coefficients.png", dpi=300) |
|
214
|
|
|
|
|
215
|
|
|
# Now zoom in around those sections. |
|
216
|
|
|
|
|
217
|
|
|
colors = [] |
|
218
|
|
|
cmap = plt.cm.get_cmap("Set1", 3) |
|
219
|
|
|
colors = [cmap(0)] + ["#CCCCCC"] * 11 + [cmap(1)] + ["#CCCCCC"] * 2 |
|
220
|
|
|
|
|
221
|
|
|
fig = plot_first_order_derivatives(model, |
|
222
|
|
|
label_names=model.vectorizer.label_names[2:], |
|
223
|
|
|
clip_less_than=None, #np.std(np.abs(model.theta[:, 6])), |
|
224
|
|
|
scaled=True, |
|
225
|
|
|
show_clipped_region=False, |
|
226
|
|
|
colors=colors, |
|
227
|
|
|
zorders=[10] + [0] * 11 + [10] + [0] * 2, |
|
228
|
|
|
show_legend=False, |
|
229
|
|
|
latex_label_names={ |
|
230
|
|
|
"AL_H": r"$[\rm{Al}/\rm{H}]$", |
|
231
|
|
|
"CA_H": r"$[\rm{Ca}/\rm{H}]$", |
|
232
|
|
|
"C_H": r"$[\rm{C}/\rm{H}]$", |
|
233
|
|
|
"FE_H": r"$[\rm{Fe}/\rm{H}]$", |
|
234
|
|
|
"K_H": r"$[\rm{K}/\rm{H}]$", |
|
235
|
|
|
"MG_H": r"$[\rm{Mg}/\rm{H}]$", |
|
236
|
|
|
"MN_H": r"$[\rm{Mn}/\rm{H}]$", |
|
237
|
|
|
"NA_H": r"$[\rm{Na}/\rm{H}]$", |
|
238
|
|
|
"NI_H": r"$[\rm{Ni}/\rm{H}]$", |
|
239
|
|
|
"N_H": r"$[\rm{N}/\rm{H}]$", |
|
240
|
|
|
"O_H": r"$[\rm{O}/\rm{H}]$", |
|
241
|
|
|
"SI_H": r"$[\rm{Si}/\rm{H}]$", |
|
242
|
|
|
"S_H": r"$[\rm{S}/\rm{H}]$", |
|
243
|
|
|
"TI_H": r"$[\rm{Ti}/\rm{H}]$", |
|
244
|
|
|
"V_H": r"$[\rm{V}/\rm{H}]$" |
|
245
|
|
|
}, |
|
246
|
|
|
label_wavelengths={ |
|
247
|
|
|
"Missing": [15235.7, 16755.1] |
|
248
|
|
|
}, |
|
249
|
|
|
wavelength_regions=[ |
|
250
|
|
|
(15235.6 - 10, 10 + 15235.6), |
|
251
|
|
|
(16755.1 - 10, 10 + 16755.1) |
|
252
|
|
|
]) |
|
253
|
|
|
|
|
254
|
|
|
for ax in fig.axes[:-1]: |
|
255
|
|
|
ax.set_xticklabels([r"${0:.0f}$".format(_) for _ in ax.get_xticks()]) |
|
256
|
|
|
|
|
257
|
|
|
fig.savefig("papers/sparse-first-order-coefficients-zoom.pdf", dpi=300) |
|
258
|
|
|
fig.savefig("papers/sparse-first-order-coefficients-zoom.png", dpi=300) |
|
259
|
|
|
|
|
260
|
|
|
|
|
261
|
|
|
|