1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
|
|
""" |
5
|
|
|
Utilities to deal with wavelength censoring. |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
from __future__ import (division, print_function, absolute_import, |
9
|
|
|
unicode_literals) |
10
|
|
|
|
11
|
|
|
__all__ = ["Censors", "create_mask", "design_matrix_mask"] |
12
|
|
|
|
13
|
|
|
import numpy as np |
14
|
|
|
|
15
|
|
|
from .vectorizer.base import BaseVectorizer |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
class Censors(dict): |
19
|
|
|
|
20
|
|
|
""" |
21
|
|
|
A dictionary sub-class that allows for label censoring masks to be |
22
|
|
|
applied on a per-pixel basis to CannonModel objects. |
23
|
|
|
|
24
|
|
|
:param label_names: |
25
|
|
|
A list containing the label names that form the model vectorizer. |
26
|
|
|
|
27
|
|
|
:param num_pixels: |
28
|
|
|
The number of pixels per star. |
29
|
|
|
|
30
|
|
|
:param items: [optional] |
31
|
|
|
A dictionary containing label names as keys and masks as values. |
32
|
|
|
""" |
33
|
|
|
|
34
|
|
|
def __init__(self, label_names, num_pixels, items=None, **kwargs): |
35
|
|
|
super(Censors, self).__init__(**kwargs) |
36
|
|
|
self._label_names = tuple(label_names) |
37
|
|
|
self._num_pixels = int(num_pixels) |
38
|
|
|
self.update(items or {}) |
39
|
|
|
return None |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
def __setitem__(self, label_name, mask): |
43
|
|
|
""" |
44
|
|
|
Update an entry in the pixel censoring dictionary. |
45
|
|
|
|
46
|
|
|
:param label_name: |
47
|
|
|
The name of the label to apply the censoring to. |
48
|
|
|
|
49
|
|
|
:param mask: |
50
|
|
|
A boolean mask with a size that equals the number of pixels per star. |
51
|
|
|
Note that a mask value of `True` indicates the label is censored at |
52
|
|
|
the given pixel, and therefore that label will not contribute to |
53
|
|
|
the spectral flux at that pixel. |
54
|
|
|
""" |
55
|
|
|
|
56
|
|
|
if label_name not in self.label_names: |
57
|
|
|
raise ValueError( |
58
|
|
|
"unrecognized label name '{}' for censoring".format(label_name)) |
59
|
|
|
|
60
|
|
|
mask = np.array(mask).flatten().astype(bool) |
61
|
|
|
if mask.size != self.num_pixels: |
62
|
|
|
raise ValueError("'{}' censoring mask has wrong size ({} != {})"\ |
63
|
|
|
.format(label_name, mask.size, self.num_pixels)) |
64
|
|
|
|
65
|
|
|
dict.__setitem__(self, label_name, mask) |
66
|
|
|
return None |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
def update(self, *args, **kwargs): |
70
|
|
|
if args: |
71
|
|
|
if len(args) > 1: |
72
|
|
|
raise TypeError("update expected at most 1 arguments, got {}"\ |
73
|
|
|
.format(len(args))) |
74
|
|
|
other = dict(args[0]) |
75
|
|
|
for key in other: |
76
|
|
|
self[key] = other[key] |
77
|
|
|
|
78
|
|
|
for key in kwargs: |
79
|
|
|
self[key] = kwargs[key] |
80
|
|
|
|
81
|
|
|
|
82
|
|
|
def setdefault(self, key, value=None): |
83
|
|
|
if key not in self: |
84
|
|
|
self[key] = value |
85
|
|
|
return self[key] |
86
|
|
|
|
87
|
|
|
|
88
|
|
|
def __getstate__(self): |
89
|
|
|
""" Return the state of the censoring mask in a serializable form. """ |
90
|
|
|
return dict( |
91
|
|
|
label_names=self.label_names, |
92
|
|
|
num_pixels=self.num_pixels, |
93
|
|
|
items=dict(self.items())) |
94
|
|
|
|
95
|
|
|
|
96
|
|
|
@property |
97
|
|
|
def label_names(self): |
98
|
|
|
return self._label_names |
99
|
|
|
|
100
|
|
|
|
101
|
|
|
@property |
102
|
|
|
def num_pixels(self): |
103
|
|
|
return self._num_pixels |
104
|
|
|
|
105
|
|
|
|
106
|
|
|
def create_mask(dispersion, censored_regions): |
107
|
|
|
""" |
108
|
|
|
Return a boolean censoring mask based on a structured list of (start, end) |
109
|
|
|
regions. |
110
|
|
|
|
111
|
|
|
:param dispersion: |
112
|
|
|
An array of dispersion values. |
113
|
|
|
|
114
|
|
|
:param censored_regions: |
115
|
|
|
A list of two-length tuples containing the `(start, end)` points of a |
116
|
|
|
censored region. |
117
|
|
|
|
118
|
|
|
:returns: |
119
|
|
|
A boolean mask indicating whether the pixels in the `dispersion` array |
120
|
|
|
are masked. |
121
|
|
|
""" |
122
|
|
|
|
123
|
|
|
mask = np.zeros(dispersion.size, dtype=bool) |
124
|
|
|
|
125
|
|
|
if isinstance(censored_regions[0], (int, float)): |
126
|
|
|
censored_regions = [censored_regions] |
127
|
|
|
|
128
|
|
|
for start, end in censored_regions: |
129
|
|
|
start, end = (start or -np.inf, end or +np.inf) |
130
|
|
|
|
131
|
|
|
censored = (end >= dispersion) * (dispersion >= start) |
132
|
|
|
mask[censored] = True |
133
|
|
|
|
134
|
|
|
return mask |
135
|
|
|
|
136
|
|
|
|
137
|
|
|
def design_matrix_mask(censors, vectorizer): |
138
|
|
|
""" |
139
|
|
|
Return a mask of which indices in the design matrix columns should be |
140
|
|
|
used for a given pixel. |
141
|
|
|
|
142
|
|
|
:param censors: |
143
|
|
|
A censoring dictionary. |
144
|
|
|
|
145
|
|
|
:param vectorizer: |
146
|
|
|
The model vectorizer: |
147
|
|
|
|
148
|
|
|
:returns: |
149
|
|
|
A mask of which indices in the model design matrix should be used for a |
150
|
|
|
given pixel. |
151
|
|
|
""" |
152
|
|
|
|
153
|
|
|
if not isinstance(censors, Censors): |
154
|
|
|
raise TypeError("censors must be a Censors class") |
155
|
|
|
|
156
|
|
|
if not isinstance(vectorizer, BaseVectorizer): |
157
|
|
|
raise TypeError("vectorizer must be a sub-class of BaseVectorizer") |
158
|
|
|
|
159
|
|
|
# Parse all the terms once-off. |
160
|
|
|
mapper = {} |
161
|
|
|
pixel_masks = np.atleast_2d(list(map(list, censors.values()))) |
162
|
|
|
for i, terms in enumerate(vectorizer.terms): |
163
|
|
|
for label_index, power in terms: |
164
|
|
|
# Let's map this directly to the censors that we actually have. |
165
|
|
|
try: |
166
|
|
|
censor_index = list(censors.keys()).index( |
167
|
|
|
censors.label_names[label_index]) |
168
|
|
|
|
169
|
|
|
except ValueError: |
170
|
|
|
# Label name is not censored, so we don't care. |
171
|
|
|
continue |
172
|
|
|
|
173
|
|
|
else: |
174
|
|
|
# Initialize a list if necessary. |
175
|
|
|
mapper.setdefault(censor_index, []) |
176
|
|
|
|
177
|
|
|
# Note that we add +1 because the first term in the design |
178
|
|
|
# matrix columns will actually be the pivot point. |
179
|
|
|
mapper[censor_index].append(1 + i) |
180
|
|
|
|
181
|
|
|
# We already know the number of terms from i. |
182
|
|
|
mask = np.ones((censors.num_pixels, 2 + i), dtype=bool) |
183
|
|
|
for censor_index, pixel in zip(*np.where(pixel_masks)): |
184
|
|
|
mask[pixel, mapper[censor_index]] = False |
185
|
|
|
|
186
|
|
|
return mask |
187
|
|
|
|