1
|
|
|
''' |
2
|
|
|
Functions for descriptive analytics. |
3
|
|
|
|
4
|
|
|
:author: Andreas Kanz |
5
|
|
|
|
6
|
|
|
''' |
7
|
|
|
|
8
|
|
|
# Imports |
9
|
|
|
import matplotlib.pyplot as plt |
10
|
|
|
import matplotlib.ticker as ticker |
11
|
|
|
import numpy as np |
12
|
|
|
import pandas as pd |
13
|
|
|
import scipy |
14
|
|
|
import seaborn as sns |
15
|
|
|
|
16
|
|
|
from .utils import _corr_selector |
17
|
|
|
from .utils import _missing_vals |
18
|
|
|
from .utils import _validate_input_0_1 |
19
|
|
|
from .utils import _validate_input_bool |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
# Functions |
23
|
|
|
|
24
|
|
|
# Correlation Matrix |
25
|
|
|
def corr_mat(data, split=None, threshold=0, method='pearson'): |
26
|
|
|
''' |
27
|
|
|
Parameters |
28
|
|
|
---------- |
29
|
|
|
|
30
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column \ |
31
|
|
|
information is used to label the plots. |
32
|
|
|
|
33
|
|
|
split: {None, 'pos', 'neg', 'high', 'low'}, default None |
34
|
|
|
Type of split to be performed. |
35
|
|
|
|
36
|
|
|
threshold: float, default 0 |
37
|
|
|
Value between 0 <= threshold <= 1 |
38
|
|
|
|
39
|
|
|
method: {'pearson', 'spearman', 'kendall'}, default 'pearson' |
40
|
|
|
* pearson: measures linear relationships and requires normally distributed and homoscedastic data. |
41
|
|
|
* spearman: ranked/ordinal correlation, measures monotonic relationships. |
42
|
|
|
* kendall: ranked/ordinal correlation, measures monotonic relationships. Computationally more expensive but |
43
|
|
|
more robus in smaller dataets than 'spearman'. |
44
|
|
|
|
45
|
|
|
Returns |
46
|
|
|
------- |
47
|
|
|
returns a Pandas Styler object |
48
|
|
|
''' |
49
|
|
|
|
50
|
|
|
# Validate Inputs |
51
|
|
|
_validate_input_0_1(threshold, 'threshold') |
52
|
|
|
|
53
|
|
|
def color_negative_red(val): |
54
|
|
|
color = '#FF3344' if val < 0 else None |
55
|
|
|
return 'color: %s' % color |
56
|
|
|
|
57
|
|
|
data = pd.DataFrame(data) |
58
|
|
|
corr = data.corr(method=method) |
59
|
|
|
|
60
|
|
|
corr = _corr_selector(corr, split=split, threshold=threshold) |
61
|
|
|
|
62
|
|
|
return corr.style.applymap(color_negative_red).format("{:.2f}", na_rep='-') |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
# Correlation matrix / heatmap |
66
|
|
|
def corr_plot(data, split=None, threshold=0, target=None, method='pearson', cmap='BrBG', figsize=(12, 10), annot=True, |
67
|
|
|
dev=False, **kwargs): |
68
|
|
|
''' |
69
|
|
|
Two-dimensional visualization of the correlation between feature-columns, excluding NA values. |
70
|
|
|
|
71
|
|
|
Parameters |
72
|
|
|
---------- |
73
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column \ |
74
|
|
|
information is used to label the plots. |
75
|
|
|
|
76
|
|
|
split: {None, 'pos', 'neg', 'high', 'low'}, default None |
77
|
|
|
Type of split to be performed. |
78
|
|
|
|
79
|
|
|
* None: visualize all correlations between the feature-columns. |
80
|
|
|
* pos: visualize all positive correlations between the feature-columns above the threshold. |
81
|
|
|
* neg: visualize all negative correlations between the feature-columns below the threshold. |
82
|
|
|
* high: visualize all correlations between the feature-columns for which abs(corr) > threshold is True. |
83
|
|
|
* low: visualize all correlations between the feature-columns for which abs(corr) < threshold is True. |
84
|
|
|
|
85
|
|
|
threshold: float, default 0 |
86
|
|
|
Value between 0 <= threshold <= 1 |
87
|
|
|
|
88
|
|
|
target: string, list, np.array or pd.Series, default None |
89
|
|
|
Specify target for correlation. E.g. label column to generate only the correlations between each feature\ |
90
|
|
|
and the label. |
91
|
|
|
|
92
|
|
|
method: {'pearson', 'spearman', 'kendall'}, default 'pearson' |
93
|
|
|
* pearson: measures linear relationships and requires normally distributed and homoscedastic data. |
94
|
|
|
* spearman: ranked/ordinal correlation, measures monotonic relationships. |
95
|
|
|
* kendall: ranked/ordinal correlation, measures monotonic relationships. Computationally more expensive but |
96
|
|
|
more robust in smaller dataets than 'spearman'. |
97
|
|
|
|
98
|
|
|
cmap: matplotlib colormap name or object, or list of colors, default 'BrBG' |
99
|
|
|
The mapping from data values to color space. |
100
|
|
|
|
101
|
|
|
figsize: tuple, default (12, 10) |
102
|
|
|
Use to control the figure size. |
103
|
|
|
|
104
|
|
|
annot: bool, default True |
105
|
|
|
Use to show or hide annotations. |
106
|
|
|
|
107
|
|
|
dev: bool, default False |
108
|
|
|
Display figure settings in the plot by setting dev = True. If False, the settings are not displayed.s |
109
|
|
|
|
110
|
|
|
**kwargs: optional |
111
|
|
|
Additional elements to control the visualization of the plot, e.g.: |
112
|
|
|
|
113
|
|
|
* mask: bool, default True |
114
|
|
|
If set to False the entire correlation matrix, including the upper triangle is shown. Set dev = False in this \ |
115
|
|
|
case to avoid overlap. |
116
|
|
|
* vmax: float, default is calculated from the given correlation coefficients. |
117
|
|
|
Value between -1 or vmin <= vmax <= 1, limits the range of the colorbar. |
118
|
|
|
* vmin: float, default is calculated from the given correlation coefficients. |
119
|
|
|
Value between -1 <= vmin <= 1 or vmax, limits the range of the colorbar. |
120
|
|
|
* linewidths: float, default 0.5 |
121
|
|
|
Controls the line-width inbetween the squares. |
122
|
|
|
* annot_kws: dict, default {'size' : 10} |
123
|
|
|
Controls the font size of the annotations. Only available when annot = True. |
124
|
|
|
* cbar_kws: dict, default {'shrink': .95, 'aspect': 30} |
125
|
|
|
Controls the size of the colorbar. |
126
|
|
|
* Many more kwargs are available, i.e. 'alpha' to control blending, or options to adjust labels, ticks ... |
127
|
|
|
|
128
|
|
|
Kwargs can be supplied through a dictionary of key-value pairs (see above). |
129
|
|
|
|
130
|
|
|
Returns |
131
|
|
|
------- |
132
|
|
|
ax: matplotlib Axes |
133
|
|
|
Returns the Axes object with the plot for further tweaking. |
134
|
|
|
''' |
135
|
|
|
|
136
|
|
|
# Validate Inputs |
137
|
|
|
_validate_input_0_1(threshold, 'threshold') |
138
|
|
|
_validate_input_bool(annot, 'annot') |
139
|
|
|
_validate_input_bool(dev, 'dev') |
140
|
|
|
|
141
|
|
|
data = pd.DataFrame(data) |
142
|
|
|
|
143
|
|
|
# Obtain correlations |
144
|
|
|
if isinstance(target, (str, list, pd.Series, np.ndarray)): |
145
|
|
|
target_data = [] |
146
|
|
|
if isinstance(target, str): |
147
|
|
|
target_data = data[target] |
148
|
|
|
data = data.drop(target, axis=1) |
149
|
|
|
|
150
|
|
|
elif isinstance(target, (list, pd.Series, np.ndarray)): |
151
|
|
|
target_data = pd.Series(target) |
152
|
|
|
|
153
|
|
|
corr = pd.DataFrame(data.corrwith(target_data)) |
154
|
|
|
corr.rename_axis(target, axis=1, inplace=True) |
155
|
|
|
corr = _corr_selector(corr, split=split, threshold=threshold) |
156
|
|
|
corr = corr.sort_values(corr.columns[0], ascending=False) |
157
|
|
|
vmax = np.round(np.nanmax(corr)-0.05, 2) |
158
|
|
|
vmin = np.round(np.nanmin(corr)+0.05, 2) |
159
|
|
|
mask = False |
160
|
|
|
square = False |
161
|
|
|
|
162
|
|
|
else: |
163
|
|
|
corr = corr_mat(data, split=split, threshold=threshold, method=method).data |
164
|
|
|
|
165
|
|
|
mask = np.triu(np.ones_like(corr, dtype=np.bool)) # Generate mask for the upper triangle |
166
|
|
|
square = True |
167
|
|
|
|
168
|
|
|
vmax = np.round(np.nanmax(corr.where(~mask))-0.05, 2) |
169
|
|
|
vmin = np.round(np.nanmin(corr.where(~mask))+0.05, 2) |
170
|
|
|
|
171
|
|
|
fig, ax = plt.subplots(figsize=figsize) |
172
|
|
|
|
173
|
|
|
# Specify kwargs for the heatmap |
174
|
|
|
kwargs = {'mask': mask, |
175
|
|
|
'cmap': cmap, |
176
|
|
|
'annot': annot, |
177
|
|
|
'vmax': vmax, |
178
|
|
|
'vmin': vmin, |
179
|
|
|
'linewidths': .5, |
180
|
|
|
'annot_kws': {'size': 10}, |
181
|
|
|
'cbar_kws': {'shrink': .95, 'aspect': 30}, |
182
|
|
|
**kwargs} |
183
|
|
|
|
184
|
|
|
# Draw heatmap with mask and some default settings |
185
|
|
|
sns.heatmap(corr, |
186
|
|
|
center=0, |
187
|
|
|
square=square, |
188
|
|
|
fmt='.2f', |
189
|
|
|
**kwargs |
190
|
|
|
) |
191
|
|
|
|
192
|
|
|
ax.set_title(f'Feature-correlation ({method})', fontdict={'fontsize': 18}) |
193
|
|
|
|
194
|
|
|
# Display settings |
195
|
|
|
if dev: |
196
|
|
|
fig.suptitle(f"\ |
197
|
|
|
Settings (dev-mode): \n\ |
198
|
|
|
- split-mode: {split} \n\ |
199
|
|
|
- threshold: {threshold} \n\ |
200
|
|
|
- method: {method} \n\ |
201
|
|
|
- annotations: {annot} \n\ |
202
|
|
|
- cbar: \n\ |
203
|
|
|
- vmax: {vmax} \n\ |
204
|
|
|
- vmin: {vmin} \n\ |
205
|
|
|
- linewidths: {kwargs['linewidths']} \n\ |
206
|
|
|
- annot_kws: {kwargs['annot_kws']} \n\ |
207
|
|
|
- cbar_kws: {kwargs['cbar_kws']}", |
208
|
|
|
fontsize=12, |
209
|
|
|
color='gray', |
210
|
|
|
x=0.35, |
211
|
|
|
y=0.85, |
212
|
|
|
ha='left') |
213
|
|
|
|
214
|
|
|
return ax |
215
|
|
|
|
216
|
|
|
|
217
|
|
|
# Distribution plot |
218
|
|
|
def dist_plot(data, mean_color='orange', figsize=(14, 2), fill_range=(0.025, 0.975), hist=False, bins=None, |
219
|
|
|
showall=False, kde_kws=None, rug_kws=None, fill_kws=None, font_kws=None): |
220
|
|
|
''' |
221
|
|
|
Two-dimensional visualization of the distribution of numerical features. |
222
|
|
|
|
223
|
|
|
Parameters |
224
|
|
|
---------- |
225
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column \ |
226
|
|
|
information is used to label the plots. |
227
|
|
|
|
228
|
|
|
mean_color: any valid color, default 'orange' |
229
|
|
|
Color of the vertical line indicating the mean of the data. |
230
|
|
|
|
231
|
|
|
figsize: tuple, default (14, 2) |
232
|
|
|
Use to control the figure size. |
233
|
|
|
|
234
|
|
|
fill_range: tuple, default (0.025, 0.975) |
235
|
|
|
Use to control set the quantiles for shading. Default spans 95% of the data, which is about two std. deviations\ |
236
|
|
|
above and below the mean. |
237
|
|
|
|
238
|
|
|
hist: bool, default False |
239
|
|
|
Set to True to display histogram bars in the plot. |
240
|
|
|
|
241
|
|
|
bins: integer, default None |
242
|
|
|
Specification of the number of hist bins. Requires hist = True |
243
|
|
|
|
244
|
|
|
showall: bool, default False |
245
|
|
|
Set to True to remove the output limit of 20 plots. |
246
|
|
|
|
247
|
|
|
kdw_kws: dict, default None |
248
|
|
|
Keyword arguments for kdeplot(). |
249
|
|
|
|
250
|
|
|
rug_kws: dict, default None |
251
|
|
|
Keyword arguments for rugplot(). |
252
|
|
|
|
253
|
|
|
fill_kws: dict, default None |
254
|
|
|
Keyword arguments to control the fill. |
255
|
|
|
|
256
|
|
|
font_kws: dict, default None |
257
|
|
|
Keyword arguments to control the font. |
258
|
|
|
|
259
|
|
|
Returns |
260
|
|
|
------- |
261
|
|
|
ax: matplotlib Axes |
262
|
|
|
Returns the Axes object with the plot for further tweaking. |
263
|
|
|
''' |
264
|
|
|
|
265
|
|
|
# Validate Inputs |
266
|
|
|
_validate_input_bool(hist, 'hist') |
267
|
|
|
_validate_input_bool(showall, 'showall') |
268
|
|
|
|
269
|
|
|
# Handle dictionary defaults |
270
|
|
|
kde_kws = {} if kde_kws is None else kde_kws.copy() |
271
|
|
|
rug_kws = {} if rug_kws is None else rug_kws.copy() |
272
|
|
|
fill_kws = {} if fill_kws is None else fill_kws.copy() |
273
|
|
|
font_kws = {} if font_kws is None else font_kws.copy() |
274
|
|
|
|
275
|
|
|
data = pd.DataFrame(data).copy() |
276
|
|
|
cols = list(data.select_dtypes(include=['number']).columns) # numeric cols |
277
|
|
|
|
278
|
|
|
if len(cols) == 0: |
279
|
|
|
print('No columns with numeric data were detected.') |
280
|
|
|
elif len(cols) >= 20 and showall is False: |
281
|
|
|
print( |
282
|
|
|
f'Note: The number of numerical features is very large ({len(cols)}), please consider splitting the data.\ |
283
|
|
|
Showing plots for the first 20 numerical features. Override this by setting showall=True.') |
284
|
|
|
cols = cols[:20] |
285
|
|
|
|
286
|
|
|
# Default settings |
287
|
|
|
kde_kws = {'color': 'k', 'alpha': 0.7, 'linewidth': 1, **kde_kws} |
288
|
|
|
rug_kws = {'color': 'brown', 'alpha': 0.5, 'linewidth': 2, 'height': 0.04, **rug_kws} |
289
|
|
|
fill_kws = {'color': 'brown', 'alpha': 0.1, **fill_kws} |
290
|
|
|
font_kws = {'color': '#111111', 'weight': 'normal', 'size': 11, **font_kws} |
291
|
|
|
|
292
|
|
|
ax = [] |
293
|
|
|
for col in cols: |
294
|
|
|
_, ax = plt.subplots(figsize=figsize) |
295
|
|
|
ax = sns.distplot(data[col], bins=bins, hist=hist, rug=True, kde_kws=kde_kws, |
296
|
|
|
rug_kws=rug_kws, hist_kws={'alpha': 0.5, 'histtype': 'step'}) |
297
|
|
|
|
298
|
|
|
# Vertical lines and fill |
299
|
|
|
line = ax.lines[0] |
300
|
|
|
x = line.get_xydata()[:, 0] |
301
|
|
|
y = line.get_xydata()[:, 1] |
302
|
|
|
ax.fill_between(x, y, |
303
|
|
|
where=( |
304
|
|
|
(x >= np.quantile(data[col], fill_range[0])) & |
305
|
|
|
(x <= np.quantile(data[col], fill_range[1]))), |
306
|
|
|
label=f'{fill_range[0]*100:.0f}% - {fill_range[1]*100:.0f}%', |
307
|
|
|
**fill_kws) |
308
|
|
|
|
309
|
|
|
ax.vlines(x=np.mean(data[col]), |
310
|
|
|
ymin=0, |
311
|
|
|
ymax=np.interp(np.mean(data[col]), x, y), |
312
|
|
|
ls='dotted', color=mean_color, lw=2, label='mean') |
313
|
|
|
ax.vlines(x=np.median(data[col]), |
314
|
|
|
ymin=0, |
315
|
|
|
ymax=np.interp(np.median(data[col]), x, y), |
316
|
|
|
ls=':', color='.3', label='median') |
317
|
|
|
ax.vlines(x=np.quantile(data[col], 0.25), |
318
|
|
|
ymin=0, |
319
|
|
|
ymax=np.interp(np.quantile(data[col], 0.25), x, y), ls=':', color='.5', label='25%') |
320
|
|
|
ax.vlines(x=np.quantile(data[col], 0.75), |
321
|
|
|
ymin=0, |
322
|
|
|
ymax=np.interp(np.quantile(data[col], 0.75), x, y), ls=':', color='.5', label='75%') |
323
|
|
|
|
324
|
|
|
ax.set_ylim(0,) |
325
|
|
|
ax.set_xlim(ax.get_xlim()[0]*1.1, ax.get_xlim()[1]*1.1) |
326
|
|
|
|
327
|
|
|
# Annotations and legend |
328
|
|
|
ax.text(0.01, 0.85, f'Mean: {np.round(np.mean(data[col]),2)}', |
329
|
|
|
fontdict=font_kws, transform=ax.transAxes) |
330
|
|
|
ax.text(0.01, 0.7, f'Std. dev: {np.round(scipy.stats.tstd(data[col]),2)}', |
331
|
|
|
fontdict=font_kws, transform=ax.transAxes) |
332
|
|
|
ax.text(0.01, 0.55, f'Skew: {np.round(scipy.stats.skew(data[col]),2)}', |
333
|
|
|
fontdict=font_kws, transform=ax.transAxes) |
334
|
|
|
ax.text(0.01, 0.4, f'Kurtosis: {np.round(scipy.stats.kurtosis(data[col]),2)}', # Excess Kurtosis |
335
|
|
|
fontdict=font_kws, transform=ax.transAxes) |
336
|
|
|
ax.text(0.01, 0.25, f'Count: {np.round(len(data[col]))}', |
337
|
|
|
fontdict=font_kws, transform=ax.transAxes) |
338
|
|
|
ax.legend(loc='upper right') |
339
|
|
|
|
340
|
|
|
return ax |
341
|
|
|
|
342
|
|
|
|
343
|
|
|
# Missing value plot |
344
|
|
|
def missingval_plot(data, cmap='PuBuGn', figsize=(12, 12), sort=False, spine_color='#EEEEEE'): |
345
|
|
|
''' |
346
|
|
|
Two-dimensional visualization of the missing values in a dataset. |
347
|
|
|
|
348
|
|
|
Parameters |
349
|
|
|
---------- |
350
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column \ |
351
|
|
|
information is used to label the plots. |
352
|
|
|
|
353
|
|
|
cmap: colormap, default 'PuBuGn' |
354
|
|
|
Any valid colormap can be used. E.g. 'Greys', 'RdPu'. More information can be found in the matplotlib \ |
355
|
|
|
documentation. |
356
|
|
|
|
357
|
|
|
figsize: tuple, default (20, 12) |
358
|
|
|
Use to control the figure size. |
359
|
|
|
|
360
|
|
|
sort: bool, default False |
361
|
|
|
Sort columns based on missing values in descending order and drop columns without any missing values |
362
|
|
|
|
363
|
|
|
spine_color: color-code, default '#EEEEEE' |
364
|
|
|
Set to 'None' to hide the spines on all plots or use any valid matplotlib color argument. |
365
|
|
|
|
366
|
|
|
Returns |
367
|
|
|
------- |
368
|
|
|
figure |
369
|
|
|
''' |
370
|
|
|
|
371
|
|
|
data = pd.DataFrame(data) |
372
|
|
|
|
373
|
|
|
if sort: |
374
|
|
|
mv_cols_sorted = data.isna().sum(axis=0).sort_values(ascending=False) |
375
|
|
|
final_cols = mv_cols_sorted.drop(mv_cols_sorted[mv_cols_sorted.values == 0].keys().tolist()).keys().tolist() |
376
|
|
|
data = data[final_cols] |
377
|
|
|
print('Displaying only columns with missing values.') |
378
|
|
|
|
379
|
|
|
# Identify missing values |
380
|
|
|
mv_cols = _missing_vals(data)['mv_cols'] # data.isna().sum(axis=0) |
381
|
|
|
mv_rows = _missing_vals(data)['mv_rows'] # data.isna().sum(axis=1) |
382
|
|
|
mv_total = _missing_vals(data)['mv_total'] |
383
|
|
|
mv_cols_ratio = _missing_vals(data)['mv_cols_ratio'] # mv_cols / data.shape[0] |
384
|
|
|
total_datapoints = data.shape[0]*data.shape[1] |
385
|
|
|
|
386
|
|
|
if mv_total == 0: |
387
|
|
|
print('No missing values found in the dataset.') |
388
|
|
|
else: |
389
|
|
|
# Create figure and axes |
390
|
|
|
fig = plt.figure(figsize=figsize) |
391
|
|
|
gs = fig.add_gridspec(nrows=6, ncols=6, left=0.05, wspace=0.05) |
392
|
|
|
ax1 = fig.add_subplot(gs[:1, :5]) |
393
|
|
|
ax2 = fig.add_subplot(gs[1:, :5]) |
394
|
|
|
ax3 = fig.add_subplot(gs[:1, 5:]) |
395
|
|
|
ax4 = fig.add_subplot(gs[1:, 5:]) |
396
|
|
|
|
397
|
|
|
# ax1 - Barplot |
398
|
|
|
colors = plt.get_cmap(cmap)(mv_cols / np.max(mv_cols)) # color bars by height |
399
|
|
|
ax1.bar(range(len(mv_cols)), np.round((mv_cols_ratio)*100, 2), color=colors) |
400
|
|
|
ax1.get_xaxis().set_visible(False) |
401
|
|
|
ax1.set(frame_on=False, xlim=(-.5, len(mv_cols)-0.5)) |
402
|
|
|
ax1.set_ylim(0, np.max(mv_cols_ratio)*100) |
403
|
|
|
ax1.grid(linestyle=':', linewidth=1) |
404
|
|
|
ax1.yaxis.set_major_formatter(ticker.PercentFormatter(decimals=0)) |
405
|
|
|
ax1.tick_params(axis='y', colors='#111111', length=1) |
406
|
|
|
|
407
|
|
|
# annotate values on top of the bars |
408
|
|
|
for rect, label in zip(ax1.patches, mv_cols): |
409
|
|
|
height = rect.get_height() |
410
|
|
|
ax1.text(.1 + rect.get_x() + rect.get_width() / 2, height+0.5, label, |
411
|
|
|
ha='center', |
412
|
|
|
va='bottom', |
413
|
|
|
rotation='90', |
414
|
|
|
alpha=0.5, |
415
|
|
|
fontsize='small') |
416
|
|
|
|
417
|
|
|
ax1.set_frame_on(True) |
418
|
|
|
for _, spine in ax1.spines.items(): |
419
|
|
|
spine.set_visible(True) |
420
|
|
|
spine.set_color(spine_color) |
421
|
|
|
ax1.spines['top'].set_color(None) |
422
|
|
|
|
423
|
|
|
# ax2 - Heatmap |
424
|
|
|
sns.heatmap(data.isna(), cbar=False, cmap='binary', ax=ax2) |
425
|
|
|
ax2.set_yticks(np.round(ax2.get_yticks()[0::5], -1)) |
426
|
|
|
ax2.set_yticklabels(ax2.get_yticks()) |
427
|
|
|
ax2.set_xticklabels( |
428
|
|
|
ax2.get_xticklabels(), |
429
|
|
|
horizontalalignment='center', |
430
|
|
|
fontweight='light', |
431
|
|
|
fontsize='medium') |
432
|
|
|
ax2.tick_params(length=1, colors='#111111') |
433
|
|
|
for _, spine in ax2.spines.items(): |
434
|
|
|
spine.set_visible(True) |
435
|
|
|
spine.set_color(spine_color) |
436
|
|
|
|
437
|
|
|
# ax3 - Summary |
438
|
|
|
fontax3 = {'color': '#111111', |
439
|
|
|
'weight': 'normal', |
440
|
|
|
'size': 12, |
441
|
|
|
} |
442
|
|
|
ax3.get_xaxis().set_visible(False) |
443
|
|
|
ax3.get_yaxis().set_visible(False) |
444
|
|
|
ax3.set(frame_on=False) |
445
|
|
|
|
446
|
|
|
ax3.text(0.1, 0.9, f"Total: {np.round(total_datapoints/1000,1)}K", |
447
|
|
|
transform=ax3.transAxes, |
448
|
|
|
fontdict=fontax3) |
449
|
|
|
ax3.text(0.1, 0.7, f"Missing: {np.round(mv_total/1000,1)}K", |
450
|
|
|
transform=ax3.transAxes, |
451
|
|
|
fontdict=fontax3) |
452
|
|
|
ax3.text(0.1, 0.5, f"Relative: {np.round(mv_total/total_datapoints*100,1)}%", |
453
|
|
|
transform=ax3.transAxes, |
454
|
|
|
fontdict=fontax3) |
455
|
|
|
ax3.text(0.1, 0.3, f"Max-col: {np.round(mv_cols.max()/data.shape[0]*100)}%", |
456
|
|
|
transform=ax3.transAxes, |
457
|
|
|
fontdict=fontax3) |
458
|
|
|
ax3.text(0.1, 0.1, f"Max-row: {np.round(mv_rows.max()/data.shape[1]*100)}%", |
459
|
|
|
transform=ax3.transAxes, |
460
|
|
|
fontdict=fontax3) |
461
|
|
|
|
462
|
|
|
# ax4 - Scatter plot |
463
|
|
|
ax4.get_yaxis().set_visible(False) |
464
|
|
|
for _, spine in ax4.spines.items(): |
465
|
|
|
spine.set_color(spine_color) |
466
|
|
|
ax4.tick_params(axis='x', colors='#111111', length=1) |
467
|
|
|
|
468
|
|
|
ax4.scatter(mv_rows, range(len(mv_rows)), s=mv_rows, c=mv_rows, cmap=cmap, marker=".", vmin=1) |
469
|
|
|
ax4.set_ylim((0, len(mv_rows))[::-1]) # limit and invert y-axis |
470
|
|
|
ax4.set_xlim(0, max(mv_rows)+0.5) |
471
|
|
|
ax4.grid(linestyle=':', linewidth=1) |
472
|
|
|
|
473
|
|
|
gs.figure.suptitle('Missing value plot', x=0.45, y=0.94, fontsize=18, color='#111111') |
474
|
|
|
|
475
|
|
|
return gs |
476
|
|
|
|