1
|
|
|
import numpy as np |
2
|
|
|
import pandas as pd |
3
|
|
|
import unittest |
4
|
|
|
from ..clean import (drop_missing, |
5
|
|
|
convert_datatypes, |
6
|
|
|
pool_duplicate_subsets) |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class Test_drop_missing(unittest.TestCase): |
10
|
|
|
|
11
|
|
|
@classmethod |
12
|
|
|
def setUpClass(cls): |
13
|
|
|
cls.df_data_drop = pd.DataFrame([[np.nan, np.nan, np.nan, np.nan, np.nan], |
14
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA, pd.NA], |
15
|
|
|
[pd.NA, 'b', 'c', 'd', 'e'], |
16
|
|
|
[pd.NA, 6, 7, 8, 9], |
17
|
|
|
[pd.NA, 2, 3, 4, pd.NA], |
18
|
|
|
[pd.NA, 6, 7, pd.NA, pd.NA]]) |
19
|
|
|
|
20
|
|
|
def test_drop_missing(self): |
21
|
|
|
self.assertEqual(drop_missing(self.df_data_drop).shape, (4, 4)) |
22
|
|
|
|
23
|
|
|
# Drop further columns based on threshold |
24
|
|
|
self.assertEqual(drop_missing(self.df_data_drop, drop_threshold_cols=0.5).shape, (4, 4)) |
25
|
|
|
self.assertEqual(drop_missing(self.df_data_drop, drop_threshold_cols=0.49).shape, (4, 3)) |
26
|
|
|
self.assertEqual(drop_missing(self.df_data_drop, drop_threshold_cols=0).shape, (4, 2)) |
27
|
|
|
|
28
|
|
|
# Drop further rows based on threshold |
29
|
|
|
self.assertEqual(drop_missing(self.df_data_drop, drop_threshold_rows=0.5).shape, (4, 4)) |
30
|
|
|
self.assertEqual(drop_missing(self.df_data_drop, drop_threshold_rows=0.49).shape, (3, 4)) |
31
|
|
|
self.assertEqual(drop_missing(self.df_data_drop, drop_threshold_rows=0).shape, (2, 4)) |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
class Test_convert_dtypes(unittest.TestCase): |
35
|
|
|
|
36
|
|
|
@classmethod |
37
|
|
|
def setUpClass(cls): |
38
|
|
|
cls.df_data_convert = pd.DataFrame([[1, 7.0, 'y', 'x', pd.NA, 'v'], |
39
|
|
|
[3, 8.0, 'd', 'e', pd.NA, 'v'], |
40
|
|
|
[5, 7.0, 'o', 'z', pd.NA, 'v'], |
41
|
|
|
[1, 7.0, 'u', 'f', pd.NA, 'p'], |
42
|
|
|
[1, 7.0, 'u', 'f', pd.NA, 'p'], |
43
|
|
|
[2, 7.0, 'g', 'a', pd.NA, 'p']]) |
44
|
|
|
|
45
|
|
|
def test_convert_dtypes(self): |
46
|
|
|
expected_results = ['Int8', 'Float32', 'string', 'string', 'category', 'category'] |
47
|
|
|
for i, _ in enumerate(expected_results): |
48
|
|
|
self.assertEqual(convert_datatypes(self.df_data_convert, cat_threshold=0.4).dtypes[i], expected_results[i]) |
49
|
|
|
|
50
|
|
|
expected_results = ['Int8', 'Float32', 'string', 'string', 'object', 'string'] |
51
|
|
|
for i, _ in enumerate(expected_results): |
52
|
|
|
self.assertEqual(convert_datatypes(self.df_data_convert).dtypes[i], expected_results[i]) |
53
|
|
|
|
54
|
|
|
expected_results = ['Int8', 'Float32', 'string', 'string', 'object', 'category'] |
55
|
|
|
for i, _ in enumerate(expected_results): |
56
|
|
|
self.assertEqual(convert_datatypes(self.df_data_convert, cat_threshold=0.5, |
57
|
|
|
cat_exclude=[4]).dtypes[i], expected_results[i]) |
58
|
|
|
|
59
|
|
|
expected_results = ['Int8', 'Float32', 'string', 'category', 'object', 'category'] |
60
|
|
|
for i, _ in enumerate(expected_results): |
61
|
|
|
self.assertEqual(convert_datatypes(self.df_data_convert, cat_threshold=0.95, |
62
|
|
|
cat_exclude=[2, 4]).dtypes[i], expected_results[i]) |
63
|
|
|
|
64
|
|
|
expected_results = ['Int8', 'Float32', 'string', 'string', 'object', 'string'] |
65
|
|
|
for i, _ in enumerate(expected_results): |
66
|
|
|
self.assertEqual(convert_datatypes(self.df_data_convert, category=False, |
67
|
|
|
cat_threshold=0.95, cat_exclude=[2, 4]).dtypes[i], expected_results[i]) |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
class Test_pool_duplicate_subsets(unittest.TestCase): |
71
|
|
|
|
72
|
|
|
@classmethod |
73
|
|
|
def setUpClass(cls): |
74
|
|
|
cls.df_data_subsets = pd.DataFrame([[1, 7, 'd', 'x', pd.NA, 'v'], |
75
|
|
|
[1, 8, 'd', 'e', pd.NA, 'v'], |
76
|
|
|
[2, 7, 'g', 'z', pd.NA, 'v'], |
77
|
|
|
[1, 7, 'u', 'f', pd.NA, 'p'], |
78
|
|
|
[1, 7, 'u', 'z', pd.NA, 'p'], |
79
|
|
|
[2, 7, 'g', 'z', pd.NA, 'p']]) |
80
|
|
|
|
81
|
|
|
def test_pool_duplicate_subsets(self): |
82
|
|
|
self.assertEqual(pool_duplicate_subsets(self.df_data_subsets).shape, (6, 3)) |
83
|
|
|
self.assertEqual(pool_duplicate_subsets(self.df_data_subsets, col_dupl_thresh=1).shape, (6, 6)) |
84
|
|
|
self.assertEqual(pool_duplicate_subsets(self.df_data_subsets, subset_thresh=0).shape, (6, 2)) |
85
|
|
|
|