| Conditions | 7 |
| Total Lines | 126 |
| Code Lines | 82 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | ''' |
||
| 17 | def missingval_plot(data, cmap='PuBuGn', figsize=(20, 12), sort=False, spine_color='#EEEEEE'): |
||
| 18 | ''' |
||
| 19 | Two-dimensional visualization of the missing values in a dataset. |
||
| 20 | |||
| 21 | Parameters |
||
| 22 | ---------- |
||
| 23 | data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column information is used to label the plots. |
||
| 24 | |||
| 25 | cmap: colormap, default 'PuBuGn' |
||
| 26 | Any valid colormap can be used. E.g. 'Greys', 'RdPu'. More information can be found in the matplotlib documentation. |
||
| 27 | |||
| 28 | figsize: tuple, default (20,12) |
||
| 29 | Use to control the figure size. |
||
| 30 | |||
| 31 | sort: bool, default False |
||
| 32 | Sort columns based on missing values in descending order and drop columns without any missing values |
||
| 33 | |||
| 34 | spine_color: color-code, default '#EEEEEE' |
||
| 35 | Set to 'None' to hide the spines on all plots or use any valid matplotlib color argument. |
||
| 36 | |||
| 37 | Returns |
||
| 38 | ------- |
||
| 39 | ax: matplotlib Axes. Axes object with the heatmap. |
||
| 40 | ''' |
||
| 41 | |||
| 42 | data = pd.DataFrame(data) |
||
| 43 | |||
| 44 | if sort: |
||
| 45 | mv_cols_sorted = data.isna().sum(axis=0).sort_values(ascending=False) |
||
| 46 | final_cols = mv_cols_sorted.drop(mv_cols_sorted[mv_cols_sorted.values == 0].keys().tolist()).keys().tolist() |
||
| 47 | data = data[final_cols] |
||
| 48 | print('Displaying only columns with missing values.') |
||
| 49 | |||
| 50 | # Identify missing values |
||
| 51 | mv_cols = data.isna().sum(axis=0) |
||
| 52 | mv_rows = data.isna().sum(axis=1) |
||
| 53 | mv_total = mv_cols.sum() |
||
| 54 | mv_cols_rel = mv_cols / data.shape[0] |
||
| 55 | total_datapoints = data.shape[0]*data.shape[1] |
||
| 56 | |||
| 57 | if mv_total == 0: |
||
| 58 | print('No missing values found in the dataset.') |
||
| 59 | else: |
||
| 60 | # Create figure and axes |
||
| 61 | fig = plt.figure(figsize=figsize) |
||
| 62 | grid = fig.add_gridspec(nrows=6, ncols=6, left=0.05, right=0.48, wspace=0.05) |
||
| 63 | ax1 = fig.add_subplot(grid[:1, :5]) |
||
| 64 | ax2 = fig.add_subplot(grid[1:, :5]) |
||
| 65 | ax3 = fig.add_subplot(grid[:1, 5:]) |
||
| 66 | ax4 = fig.add_subplot(grid[1:, 5:]) |
||
| 67 | |||
| 68 | # ax1 - Barplot |
||
| 69 | colors = plt.get_cmap(cmap)(mv_cols / np.max(mv_cols)) # color bars by height |
||
| 70 | ax1.bar(range(len(mv_cols)), np.round((mv_cols_rel)*100, 2), color=colors) |
||
| 71 | ax1.get_xaxis().set_visible(False) |
||
| 72 | ax1.set(frame_on=False, xlim=(-.5, len(mv_cols)-0.5)) |
||
| 73 | ax1.set_ylim(0, np.max(mv_cols_rel)*100) |
||
| 74 | ax1.grid(linestyle=':', linewidth=1) |
||
| 75 | ax1.yaxis.set_major_formatter(ticker.PercentFormatter(decimals=0)) |
||
| 76 | ax1.tick_params(axis='y', colors='#111111', length=1) |
||
| 77 | |||
| 78 | # annotate values on top of the bars |
||
| 79 | for rect, label in zip(ax1.patches, mv_cols): |
||
| 80 | height = rect.get_height() |
||
| 81 | ax1.text(.1 + rect.get_x() + rect.get_width() / 2, height+0.5, label, |
||
| 82 | ha='center', |
||
| 83 | va='bottom', |
||
| 84 | rotation='90', |
||
| 85 | alpha=0.5, |
||
| 86 | fontsize='small') |
||
| 87 | |||
| 88 | ax1.set_frame_on(True) |
||
| 89 | for _, spine in ax1.spines.items(): |
||
| 90 | spine.set_visible(True) |
||
| 91 | spine.set_color(spine_color) |
||
| 92 | ax1.spines['top'].set_color(None) |
||
| 93 | |||
| 94 | # ax2 - Heatmap |
||
| 95 | sns.heatmap(data.isna(), cbar=False, cmap='binary', ax=ax2) |
||
| 96 | ax2.set_yticks(np.round(ax2.get_yticks()[0::5], -1)) |
||
| 97 | ax2.set_yticklabels(ax2.get_yticks()) |
||
| 98 | ax2.set_xticklabels( |
||
| 99 | ax2.get_xticklabels(), |
||
| 100 | horizontalalignment='center', |
||
| 101 | fontweight='light', |
||
| 102 | fontsize='medium') |
||
| 103 | ax2.tick_params(length=1, colors='#111111') |
||
| 104 | for _, spine in ax2.spines.items(): |
||
| 105 | spine.set_visible(True) |
||
| 106 | spine.set_color(spine_color) |
||
| 107 | |||
| 108 | # ax3 - Summary |
||
| 109 | fontax3 = {'color': '#111111', |
||
| 110 | 'weight': 'normal', |
||
| 111 | 'size': 12, |
||
| 112 | } |
||
| 113 | ax3.get_xaxis().set_visible(False) |
||
| 114 | ax3.get_yaxis().set_visible(False) |
||
| 115 | ax3.set(frame_on=False) |
||
| 116 | |||
| 117 | ax3.text(0.1, 0.9, f"Total: {np.round(total_datapoints/1000,1)}K", |
||
| 118 | transform=ax3.transAxes, |
||
| 119 | fontdict=fontax3) |
||
| 120 | ax3.text(0.1, 0.7, f"Missing: {np.round(mv_total/1000,1)}K", |
||
| 121 | transform=ax3.transAxes, |
||
| 122 | fontdict=fontax3) |
||
| 123 | ax3.text(0.1, 0.5, f"Relative: {np.round(mv_total/total_datapoints*100,1)}%", |
||
| 124 | transform=ax3.transAxes, |
||
| 125 | fontdict=fontax3) |
||
| 126 | ax3.text(0.1, 0.3, f"Max-col: {np.round(mv_cols.max()/data.shape[0]*100)}%", |
||
| 127 | transform=ax3.transAxes, |
||
| 128 | fontdict=fontax3) |
||
| 129 | ax3.text(0.1, 0.1, f"Max-row: {np.round(mv_rows.max()/data.shape[1]*100)}%", |
||
| 130 | transform=ax3.transAxes, |
||
| 131 | fontdict=fontax3) |
||
| 132 | |||
| 133 | # ax4 - Scatter plot |
||
| 134 | ax4.get_yaxis().set_visible(False) |
||
| 135 | for _, spine in ax4.spines.items(): |
||
| 136 | spine.set_color(spine_color) |
||
| 137 | ax4.tick_params(axis='x', colors='#111111', length=1) |
||
| 138 | |||
| 139 | ax4.scatter(mv_rows, range(len(mv_rows)), s=mv_rows, c=mv_rows, cmap=cmap, marker=".") |
||
| 140 | ax4.set_ylim(0, len(mv_rows)) |
||
| 141 | ax4.set_ylim(ax4.get_ylim()[::-1]) # invert y-axis |
||
| 142 | ax4.grid(linestyle=':', linewidth=1) |
||
| 143 | |||
| 318 |