1
|
|
|
''' |
2
|
|
|
Utilities for data cleaning. |
3
|
|
|
|
4
|
|
|
:author: Andreas Kanz |
5
|
|
|
|
6
|
|
|
''' |
7
|
|
|
|
8
|
|
|
# Imports |
9
|
|
|
import pandas as pd |
10
|
|
|
|
11
|
|
|
from .describe import _memory_usage |
12
|
|
|
from .describe import _missing_vals |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def convert_datatypes(data, category=True, cat_threshold=0.05, cat_exclude=[]): |
16
|
|
|
''' |
17
|
|
|
Converts columns to best possible dtypes using dtypes supporting pd.NA. |
18
|
|
|
|
19
|
|
|
Parameters |
20
|
|
|
---------- |
21
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column information is used to label the plots. |
22
|
|
|
|
23
|
|
|
category: bool, default True |
24
|
|
|
Change dtypes of columns to "category". Set threshold using cat_threshold. |
25
|
|
|
|
26
|
|
|
cat_threshold: float, default 0.05 |
27
|
|
|
Ratio of unique values below which categories are inferred and column dtype is changed to categorical. |
28
|
|
|
|
29
|
|
|
cat_exclude: default [] (empty list) |
30
|
|
|
List of columns to exclude from categorical conversion. |
31
|
|
|
|
32
|
|
|
Returns |
33
|
|
|
------- |
34
|
|
|
Pandas DataFrame. |
35
|
|
|
|
36
|
|
|
''' |
37
|
|
|
|
38
|
|
|
data = pd.DataFrame(data) |
39
|
|
|
for col in data.columns: |
40
|
|
|
data[col] = data[col].convert_dtypes() |
41
|
|
|
unique_vals_ratio = data[col].nunique(dropna=False) / data.shape[0] |
42
|
|
|
if category and unique_vals_ratio < cat_threshold and col not in cat_exclude: |
43
|
|
|
data[col] = data[col].astype('category') |
44
|
|
|
|
45
|
|
|
return data |
46
|
|
|
|
47
|
|
|
|
48
|
|
|
def drop_missing(data, drop_threshold_cols=1, drop_threshold_rows=1): |
49
|
|
|
''' |
50
|
|
|
Drops entirely empty columns and rows by default and optionally provides flexibility to loosens restrictions to drop additional columns and rows based on the fraction of NA-values. Note: Columns are dropped first. Rows are dropped based on the remaining data. |
51
|
|
|
|
52
|
|
|
Parameters |
53
|
|
|
---------- |
54
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column information is used to label the plots. |
55
|
|
|
|
56
|
|
|
drop_threshold_cols: float, default 1 |
57
|
|
|
Drop columns with NA-ratio above the specified threshold. |
58
|
|
|
|
59
|
|
|
drop_threshold_rows: float, default 1 |
60
|
|
|
Drop rows with NA-ratio above the specified threshold. |
61
|
|
|
|
62
|
|
|
Returns |
63
|
|
|
------- |
64
|
|
|
Pandas DataFrame. |
65
|
|
|
|
66
|
|
|
''' |
67
|
|
|
|
68
|
|
|
data = pd.DataFrame(data) |
69
|
|
|
data = data.dropna(axis=0, how='all') |
70
|
|
|
data = data.dropna(axis=1, how='all') |
71
|
|
|
data = data.drop(columns=data.loc[:, _missing_vals(data)[3] > drop_threshold_cols].columns) # drop cols |
72
|
|
|
data_cleaned = data.drop(index=data.loc[_missing_vals(data)[4] > drop_threshold_rows, :].index) # drop rows |
73
|
|
|
|
74
|
|
|
return data_cleaned |
75
|
|
|
|
76
|
|
|
|
77
|
|
|
def data_cleaning(data, drop_threshold_cols=0.9, drop_threshold_rows=0.9, category=True, cat_threshold=0.05, cat_exclude=[], show='all'): |
78
|
|
|
''' |
79
|
|
|
Perform initial data cleaning tasks on a dataset, such as dropping empty rows and columns and optimizing the datatypes. |
80
|
|
|
|
81
|
|
|
Parameters |
82
|
|
|
---------- |
83
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. If a Pandas DataFrame is provided, the index/column information is used to label the plots. |
84
|
|
|
|
85
|
|
|
drop_threshold_cols: float, default 1 |
86
|
|
|
Drop columns with NA-ratio above the specified threshold. |
87
|
|
|
|
88
|
|
|
drop_threshold_rows: float, default 1 |
89
|
|
|
Drop rows with NA-ratio above the specified threshold. |
90
|
|
|
|
91
|
|
|
category: bool, default True |
92
|
|
|
Change dtypes of columns to "category". Set threshold using cat_threshold. |
93
|
|
|
|
94
|
|
|
cat_threshold: float, default 0.05 |
95
|
|
|
Ratio of unique values below which categories are inferred and column dtype is changed to categorical. |
96
|
|
|
|
97
|
|
|
cat_exclude: default [] (empty list) |
98
|
|
|
List of columns to exclude from categorical conversion. |
99
|
|
|
|
100
|
|
|
show: {'all', 'changes', None} default 'all' |
101
|
|
|
Specify verbosity of the output. |
102
|
|
|
* 'all': Print information about the data before and after cleaning as well as information about changes. |
103
|
|
|
* 'changes': Print out differences in the data before and after cleaning. |
104
|
|
|
* None: no information about the data is printed. |
105
|
|
|
|
106
|
|
|
Returns |
107
|
|
|
------- |
108
|
|
|
Pandas DataFrame. |
109
|
|
|
|
110
|
|
|
See Also |
111
|
|
|
-------- |
112
|
|
|
convert_datatypes: Converts columns to best possible dtypes. |
113
|
|
|
drop_missing : Flexibly drops columns and rows. |
114
|
|
|
_memory_usage: Gives the total memory usage in kilobytes. |
115
|
|
|
_missing_vals: Metrics about missing values in the dataset. |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
Notes |
119
|
|
|
----- |
120
|
|
|
The category dtype is not grouped in the summary, unless it contains exactly the same categories. |
121
|
|
|
|
122
|
|
|
''' |
123
|
|
|
|
124
|
|
|
data = pd.DataFrame(data) |
125
|
|
|
data_cleaned = drop_missing(data, drop_threshold_cols, drop_threshold_rows) |
126
|
|
|
data_cleaned = convert_datatypes(data_cleaned, category=True, cat_threshold=0.05, cat_exclude=cat_exclude) |
127
|
|
|
|
128
|
|
|
if show in ['changes', 'all']: |
129
|
|
|
if show == 'all': |
130
|
|
|
print('Before data cleaning:\n') |
131
|
|
|
print(f'dtypes:\n{data.dtypes.value_counts()}') |
132
|
|
|
print(f'\nNumber of rows: {data.shape[0]}') |
133
|
|
|
print(f'Number of cols: {data.shape[1]}') |
134
|
|
|
print(f'Missing values: {_missing_vals(data)[0]}') |
135
|
|
|
print(f'Memory usage: {_memory_usage(data)} KB') |
136
|
|
|
print('_______________________________________________________\n') |
137
|
|
|
print('After data cleaning:\n') |
138
|
|
|
print(f'dtypes:\n{data_cleaned.dtypes.value_counts()}') |
139
|
|
|
print(f'\nNumber of rows: {data_cleaned.shape[0]}') |
140
|
|
|
print(f'Number of cols: {data_cleaned.shape[1]}') |
141
|
|
|
print(f'Missing values: {_missing_vals(data_cleaned)[0]}') |
142
|
|
|
print(f'Memory usage: {_memory_usage(data_cleaned)} KB') |
143
|
|
|
print('_______________________________________________________\n') |
144
|
|
|
|
145
|
|
|
print(f'Shape of cleaned dataset: {data_cleaned.shape} - Remaining NAs: {_missing_vals(data_cleaned)[0]}') |
146
|
|
|
print(f'\nChanges:') |
147
|
|
|
print(f'Dropped rows: {data.shape[0]-data_cleaned.shape[0]}') |
148
|
|
|
print(f'Dropped columns: {data.shape[1]-data_cleaned.shape[1]}') |
149
|
|
|
print(f'Dropped missing values: {_missing_vals(data)[0]-_missing_vals(data_cleaned)[0]}') |
150
|
|
|
mem_change = _memory_usage(data)-_memory_usage(data_cleaned) |
151
|
|
|
print(f'Reduced memory by: {mem_change} KB (-{round(100*mem_change/_memory_usage(data),1)}%)') |
152
|
|
|
|
153
|
|
|
return data_cleaned |
154
|
|
|
|