1
|
|
|
''' |
2
|
|
|
Functions for data cleaning. |
3
|
|
|
|
4
|
|
|
:author: Andreas Kanz |
5
|
|
|
|
6
|
|
|
''' |
7
|
|
|
|
8
|
|
|
# Imports |
9
|
|
|
import itertools |
10
|
|
|
import numpy as np |
11
|
|
|
import pandas as pd |
12
|
|
|
from sklearn.base import BaseEstimator, TransformerMixin |
13
|
|
|
|
14
|
|
|
from .describe import corr_mat |
15
|
|
|
from .utils import (_diff_report, |
16
|
|
|
_drop_duplicates, |
17
|
|
|
_missing_vals, |
18
|
|
|
_validate_input_bool, |
19
|
|
|
_validate_input_range) |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
__all__ = ['convert_datatypes', |
23
|
|
|
'data_cleaning', |
24
|
|
|
'drop_missing', |
25
|
|
|
'mv_col_handling'] |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
def convert_datatypes(data, category=True, cat_threshold=0.05, cat_exclude=None): |
29
|
|
|
''' |
30
|
|
|
Converts columns to best possible dtypes using dtypes supporting pd.NA. Temporarily not converting integers. |
31
|
|
|
|
32
|
|
|
Parameters |
33
|
|
|
---------- |
34
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
35
|
|
|
|
36
|
|
|
category: bool, default True |
37
|
|
|
Change dtypes of columns with dtype "object" to "category". Set threshold using cat_threshold or exclude \ |
38
|
|
|
columns using cat_exclude. |
39
|
|
|
|
40
|
|
|
cat_threshold: float, default 0.05 |
41
|
|
|
Ratio of unique values below which categories are inferred and column dtype is changed to categorical. |
42
|
|
|
|
43
|
|
|
cat_exclude: list, default None |
44
|
|
|
List of columns to exclude from categorical conversion. |
45
|
|
|
|
46
|
|
|
Returns |
47
|
|
|
------- |
48
|
|
|
data: Pandas DataFrame |
49
|
|
|
''' |
50
|
|
|
|
51
|
|
|
# Validate Inputs |
52
|
|
|
_validate_input_bool(category, 'Category') |
53
|
|
|
_validate_input_range(cat_threshold, 'cat_threshold', 0, 1) |
54
|
|
|
|
55
|
|
|
cat_exclude = [] if cat_exclude is None else cat_exclude.copy() |
56
|
|
|
|
57
|
|
|
data = pd.DataFrame(data).copy() |
58
|
|
|
for col in data.columns: |
59
|
|
|
unique_vals_ratio = data[col].nunique(dropna=False) / data.shape[0] |
60
|
|
|
if (category and |
61
|
|
|
unique_vals_ratio < cat_threshold and |
62
|
|
|
col not in cat_exclude and |
63
|
|
|
data[col].dtype == 'object'): |
64
|
|
|
data[col] = data[col].astype('category') |
65
|
|
|
data[col] = data[col].convert_dtypes(infer_objects=True, convert_string=True, |
66
|
|
|
convert_integer=False, convert_boolean=True) |
67
|
|
|
|
68
|
|
|
return data |
69
|
|
|
|
70
|
|
|
|
71
|
|
|
def drop_missing(data, drop_threshold_cols=1, drop_threshold_rows=1): |
72
|
|
|
''' |
73
|
|
|
Drops completely empty columns and rows by default and optionally provides flexibility to loosen restrictions to \ |
74
|
|
|
drop additional columns and rows based on the fraction of remaining NA-values. |
75
|
|
|
|
76
|
|
|
Parameters |
77
|
|
|
---------- |
78
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
79
|
|
|
|
80
|
|
|
drop_threshold_cols: float, default 1 |
81
|
|
|
Drop columns with NA-ratio above the specified threshold. |
82
|
|
|
|
83
|
|
|
drop_threshold_rows: float, default 1 |
84
|
|
|
Drop rows with NA-ratio above the specified threshold. |
85
|
|
|
|
86
|
|
|
Returns |
87
|
|
|
------- |
88
|
|
|
data_cleaned: Pandas DataFrame |
89
|
|
|
|
90
|
|
|
Notes |
91
|
|
|
----- |
92
|
|
|
Columns are dropped first. Rows are dropped based on the remaining data. |
93
|
|
|
''' |
94
|
|
|
|
95
|
|
|
# Validate Inputs |
96
|
|
|
_validate_input_range(drop_threshold_cols, 'drop_threshold_cols', 0, 1) |
97
|
|
|
_validate_input_range(drop_threshold_rows, 'drop_threshold_rows', 0, 1) |
98
|
|
|
|
99
|
|
|
data = pd.DataFrame(data).copy() |
100
|
|
|
data = data.dropna(axis=0, how='all').dropna(axis=1, how='all') |
101
|
|
|
data = data.drop(columns=data.loc[:, _missing_vals(data)['mv_cols_ratio'] > drop_threshold_cols].columns) |
102
|
|
|
data_cleaned = data.drop(index=data.loc[_missing_vals(data)['mv_rows_ratio'] > drop_threshold_rows, :].index) |
103
|
|
|
|
104
|
|
|
return data_cleaned |
105
|
|
|
|
106
|
|
|
|
107
|
|
|
def data_cleaning(data, drop_threshold_cols=0.9, drop_threshold_rows=0.9, drop_duplicates=True, |
108
|
|
|
convert_dtypes=True, category=True, cat_threshold=0.03, cat_exclude=None, show='changes'): |
109
|
|
|
''' |
110
|
|
|
Perform initial data cleaning tasks on a dataset, such as dropping single valued and empty rows, empty \ |
111
|
|
|
columns as well as optimizing the datatypes. |
112
|
|
|
|
113
|
|
|
Parameters |
114
|
|
|
---------- |
115
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
116
|
|
|
|
117
|
|
|
drop_threshold_cols: float, default 0.9 |
118
|
|
|
Drop columns with NA-ratio above the specified threshold. |
119
|
|
|
|
120
|
|
|
drop_threshold_rows: float, default 0.9 |
121
|
|
|
Drop rows with NA-ratio above the specified threshold. |
122
|
|
|
|
123
|
|
|
drop_duplicates: bool, default True |
124
|
|
|
Drop duplicate rows, keeping the first occurence. This step comes after the dropping of missing values. |
125
|
|
|
|
126
|
|
|
convert_dtypes: bool, default True |
127
|
|
|
Convert dtypes using pd.convert_dtypes(). |
128
|
|
|
|
129
|
|
|
category: bool, default True |
130
|
|
|
Change dtypes of columns to "category". Set threshold using cat_threshold. Requires convert_dtypes=True |
131
|
|
|
|
132
|
|
|
cat_threshold: float, default 0.03 |
133
|
|
|
Ratio of unique values below which categories are inferred and column dtype is changed to categorical. |
134
|
|
|
|
135
|
|
|
cat_exclude: list, default None |
136
|
|
|
List of columns to exclude from categorical conversion. |
137
|
|
|
|
138
|
|
|
show: {'all', 'changes', None} default 'all' |
139
|
|
|
Specify verbosity of the output. |
140
|
|
|
* 'all': Print information about the data before and after cleaning as well as information about changes. |
141
|
|
|
* 'changes': Print out differences in the data before and after cleaning. |
142
|
|
|
* None: No information about the data and the data cleaning is printed. |
143
|
|
|
|
144
|
|
|
Returns |
145
|
|
|
------- |
146
|
|
|
data_cleaned: Pandas DataFrame |
147
|
|
|
|
148
|
|
|
See Also |
149
|
|
|
-------- |
150
|
|
|
convert_datatypes: Convert columns to best possible dtypes. |
151
|
|
|
drop_missing : Flexibly drop columns and rows. |
152
|
|
|
_memory_usage: Gives the total memory usage in kilobytes. |
153
|
|
|
_missing_vals: Metrics about missing values in the dataset. |
154
|
|
|
|
155
|
|
|
Notes |
156
|
|
|
----- |
157
|
|
|
The category dtype is not grouped in the summary, unless it contains exactly the same categories. |
158
|
|
|
''' |
159
|
|
|
|
160
|
|
|
# Validate Inputs |
161
|
|
|
_validate_input_range(drop_threshold_cols, 'drop_threshold_cols', 0, 1) |
162
|
|
|
_validate_input_range(drop_threshold_rows, 'drop_threshold_rows', 0, 1) |
163
|
|
|
_validate_input_bool(drop_duplicates, 'drop_duplicates') |
164
|
|
|
_validate_input_bool(convert_dtypes, 'convert_datatypes') |
165
|
|
|
_validate_input_bool(category, 'category') |
166
|
|
|
_validate_input_range(cat_threshold, 'cat_threshold', 0, 1) |
167
|
|
|
|
168
|
|
|
data = pd.DataFrame(data).copy() |
169
|
|
|
data_cleaned = drop_missing(data, drop_threshold_cols, drop_threshold_rows) |
170
|
|
|
|
171
|
|
|
single_val_cols = data_cleaned.columns[data_cleaned.nunique(dropna=False) == 1].tolist() |
172
|
|
|
data_cleaned = data_cleaned.drop(columns=single_val_cols) |
173
|
|
|
|
174
|
|
|
dupl_rows = None |
175
|
|
|
|
176
|
|
|
if drop_duplicates: |
177
|
|
|
data_cleaned, dupl_rows = _drop_duplicates(data_cleaned) |
178
|
|
|
if convert_dtypes: |
179
|
|
|
data_cleaned = convert_datatypes(data_cleaned, category=category, cat_threshold=cat_threshold, |
180
|
|
|
cat_exclude=cat_exclude) |
181
|
|
|
|
182
|
|
|
_diff_report(data, data_cleaned, dupl_rows=dupl_rows, single_val_cols=single_val_cols, show=show) |
183
|
|
|
|
184
|
|
|
return data_cleaned |
185
|
|
|
|
186
|
|
|
|
187
|
|
|
class DataCleaner(BaseEstimator, TransformerMixin): |
188
|
|
|
''' |
189
|
|
|
Wrapper for data_cleaning(). Allows data_cleaning() to be put into a pipeline with similar |
190
|
|
|
functions (e.g. using MVColHandler() or SubsetPooler()). |
191
|
|
|
|
192
|
|
|
Parameters: |
193
|
|
|
---------´ |
194
|
|
|
drop_threshold_cols: float, default 0.9 |
195
|
|
|
Drop columns with NA-ratio above the specified threshold. |
196
|
|
|
|
197
|
|
|
drop_threshold_rows: float, default 0.9 |
198
|
|
|
Drop rows with NA-ratio above the specified threshold. |
199
|
|
|
|
200
|
|
|
drop_duplicates: bool, default True |
201
|
|
|
Drop duplicate rows, keeping the first occurence. This step comes after the dropping of missing values. |
202
|
|
|
|
203
|
|
|
convert_dtypes: bool, default True |
204
|
|
|
Convert dtypes using pd.convert_dtypes(). |
205
|
|
|
|
206
|
|
|
category: bool, default True |
207
|
|
|
Change dtypes of columns to "category". Set threshold using cat_threshold. Requires convert_dtypes=True |
208
|
|
|
|
209
|
|
|
cat_threshold: float, default 0.03 |
210
|
|
|
Ratio of unique values below which categories are inferred and column dtype is changed to categorical. |
211
|
|
|
|
212
|
|
|
cat_exclude: list, default None |
213
|
|
|
List of columns to exclude from categorical conversion. |
214
|
|
|
|
215
|
|
|
show: {'all', 'changes', None} default 'all' |
216
|
|
|
Specify verbosity of the output. |
217
|
|
|
* 'all': Print information about the data before and after cleaning as well as information about changes. |
218
|
|
|
* 'changes': Print out differences in the data before and after cleaning. |
219
|
|
|
* None: No information about the data and the data cleaning is printed. |
220
|
|
|
|
221
|
|
|
Returns: |
222
|
|
|
------- |
223
|
|
|
data_cleaned: Pandas DataFrame |
224
|
|
|
''' |
225
|
|
|
|
226
|
|
|
def __init__(self, drop_threshold_cols=0.9, drop_threshold_rows=0.9, drop_duplicates=True, convert_dtypes=True, |
227
|
|
|
category=True, cat_threshold=0.03, cat_exclude=None, show='changes'): |
228
|
|
|
self.drop_threshold_cols = drop_threshold_cols |
229
|
|
|
self.drop_threshold_rows = drop_threshold_rows |
230
|
|
|
self.drop_duplicates = drop_duplicates |
231
|
|
|
self.convert_dtypes = convert_dtypes |
232
|
|
|
self.category = category |
233
|
|
|
self.cat_threshold = cat_threshold |
234
|
|
|
self.cat_exclude = cat_exclude |
235
|
|
|
self.show = show |
236
|
|
|
|
237
|
|
|
def fit(self, data, target=None): |
238
|
|
|
return self |
239
|
|
|
|
240
|
|
|
def transform(self, data, target=None): |
241
|
|
|
data_cleaned = data_cleaning(data, drop_threshold_cols=self.drop_threshold_cols, |
242
|
|
|
drop_threshold_rows=self.drop_threshold_rows, drop_duplicates=self.drop_duplicates, |
243
|
|
|
convert_dtypes=self.convert_dtypes, category=self.category, cat_threshold=self. |
244
|
|
|
cat_threshold, cat_exclude=self.cat_exclude, show=self.show) |
245
|
|
|
return data_cleaned |
246
|
|
|
|
247
|
|
|
|
248
|
|
|
def mv_col_handling(data, target=None, mv_threshold=0.1, corr_thresh_features=0.5, corr_thresh_target=0.3, |
249
|
|
|
return_details=False): |
250
|
|
|
''' |
251
|
|
|
Converts columns with a high ratio of missing values into binary features and eventually drops them based on |
252
|
|
|
their correlation with other features and the target variable. This function follows a three step process: |
253
|
|
|
- 1) Identify features with a high ratio of missing values. |
254
|
|
|
- 2) Identify high correlations of these features among themselves and with other features in the dataset. |
255
|
|
|
- 3) Features with high ratio of missing values and high correlation among each other are dropped unless |
256
|
|
|
they correlate reasonably well with the target variable. |
257
|
|
|
|
258
|
|
|
Note: If no target is provided, the process exits after step two and drops columns identified up to this point. |
259
|
|
|
|
260
|
|
|
Parameters |
261
|
|
|
---------- |
262
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
263
|
|
|
|
264
|
|
|
target: string, list, np.array or pd.Series, default None |
265
|
|
|
Specify target for correlation. I.e. label column to generate only the correlations between each feature |
266
|
|
|
and the label. |
267
|
|
|
|
268
|
|
|
mv_threshold: float, default 0.1 |
269
|
|
|
Value between 0 <= threshold <= 1. Features with a missing-value-ratio larger than mv_threshold are candidates |
270
|
|
|
for dropping and undergo further analysis. |
271
|
|
|
|
272
|
|
|
corr_thresh_features: float, default 0.5 |
273
|
|
|
Value between 0 <= threshold <= 1. Maximum correlation a previously identified features (with a high mv-ratio) |
274
|
|
|
is allowed to have with another feature. If this threshold is overstepped, the feature undergoes further |
275
|
|
|
analysis. |
276
|
|
|
|
277
|
|
|
corr_thresh_target: float, default 0.3 |
278
|
|
|
Value between 0 <= threshold <= 1. Minimum required correlation of a remaining feature (i.e. feature with a |
279
|
|
|
high mv-ratio and high correlation to another existing feature) with the target. If this threshold is not met |
280
|
|
|
the feature is ultimately dropped. |
281
|
|
|
|
282
|
|
|
return_details: bool, default False |
283
|
|
|
Provdies flexibility to return intermediary results. |
284
|
|
|
|
285
|
|
|
Returns |
286
|
|
|
------- |
287
|
|
|
data: Updated Pandas DataFrame |
288
|
|
|
|
289
|
|
|
optional: |
290
|
|
|
cols_mv: Columns with missing values included in the analysis |
291
|
|
|
drop_cols: List of dropped columns |
292
|
|
|
''' |
293
|
|
|
|
294
|
|
|
# Validate Inputs |
295
|
|
|
_validate_input_range(mv_threshold, 'mv_threshold', 0, 1) |
296
|
|
|
_validate_input_range(corr_thresh_features, 'corr_thresh_features', 0, 1) |
297
|
|
|
_validate_input_range(corr_thresh_target, 'corr_thresh_target', 0, 1) |
298
|
|
|
|
299
|
|
|
data = pd.DataFrame(data).copy() |
300
|
|
|
data_local = data.copy() |
301
|
|
|
mv_ratios = _missing_vals(data_local)['mv_cols_ratio'] |
302
|
|
|
cols_mv = mv_ratios[mv_ratios > mv_threshold].index.tolist() |
303
|
|
|
data_local[cols_mv] = data_local[cols_mv].applymap(lambda x: 1 if not pd.isnull(x) else x).fillna(0) |
304
|
|
|
|
305
|
|
|
high_corr_features = [] |
306
|
|
|
data_temp = data_local.copy() |
307
|
|
|
for col in cols_mv: |
308
|
|
|
corrmat = corr_mat(data_temp, colored=False) |
309
|
|
|
if abs(corrmat[col]).nlargest(2)[1] > corr_thresh_features: |
310
|
|
|
high_corr_features.append(col) |
311
|
|
|
data_temp = data_temp.drop(columns=[col]) |
312
|
|
|
|
313
|
|
|
drop_cols = [] |
314
|
|
|
if target is None: |
315
|
|
|
data = data.drop(columns=high_corr_features) |
316
|
|
|
else: |
317
|
|
|
corrs = corr_mat(data_local, target=target, colored=False).loc[high_corr_features] |
318
|
|
|
drop_cols = corrs.loc[abs(corrs.iloc[:, 0]) < corr_thresh_target].index.tolist() |
319
|
|
|
data = data.drop(columns=drop_cols) |
320
|
|
|
|
321
|
|
|
if return_details: |
322
|
|
|
return data, cols_mv, drop_cols |
323
|
|
|
|
324
|
|
|
return data |
325
|
|
|
|
326
|
|
|
|
327
|
|
|
class MVColHandler(BaseEstimator, TransformerMixin): |
328
|
|
|
''' |
329
|
|
|
Wrapper for mv_col_handling(). Allows mv_col_handling() to be put into a pipeline with similar |
330
|
|
|
functions (e.g. using DataCleaner() or SubsetPooler()). |
331
|
|
|
|
332
|
|
|
Parameters |
333
|
|
|
---------- |
334
|
|
|
target: string, list, np.array or pd.Series, default None |
335
|
|
|
Specify target for correlation. E.g. label column to generate only the correlations between each feature \ |
336
|
|
|
and the label. |
337
|
|
|
|
338
|
|
|
mv_threshold: float, default 0.1 |
339
|
|
|
Value between 0 <= threshold <= 1. Features with a missing-value-ratio larger than mv_threshold are candidates \ |
340
|
|
|
for dropping and undergo further analysis. |
341
|
|
|
|
342
|
|
|
corr_thresh_features: float, default 0.6 |
343
|
|
|
Value between 0 <= threshold <= 1. Maximum correlation a previously identified features with a high mv-ratio is\ |
344
|
|
|
allowed to have with another feature. If this threshold is overstepped, the feature undergoes further analysis. |
345
|
|
|
|
346
|
|
|
corr_thresh_target: float, default 0.3 |
347
|
|
|
Value between 0 <= threshold <= 1. Minimum required correlation of a remaining feature (i.e. feature with a \ |
348
|
|
|
high mv-ratio and high correlation to another existing feature) with the target. If this threshold is not met \ |
349
|
|
|
the feature is ultimately dropped. |
350
|
|
|
|
351
|
|
|
return_details: bool, default True |
352
|
|
|
Provdies flexibility to return intermediary results. |
353
|
|
|
|
354
|
|
|
Returns |
355
|
|
|
------- |
356
|
|
|
data: Updated Pandas DataFrame |
357
|
|
|
''' |
358
|
|
|
|
359
|
|
|
def __init__(self, target=None, mv_threshold=0.1, corr_thresh_features=0.6, corr_thresh_target=0.3, |
360
|
|
|
return_details=True): |
361
|
|
|
self.target = target |
362
|
|
|
self.mv_threshold = mv_threshold |
363
|
|
|
self.corr_thresh_features = corr_thresh_features |
364
|
|
|
self.corr_thresh_target = corr_thresh_target |
365
|
|
|
self.return_details = return_details |
366
|
|
|
|
367
|
|
|
def fit(self, data, target=None): |
368
|
|
|
return self |
369
|
|
|
|
370
|
|
|
def transform(self, data, target=None): |
371
|
|
|
data, cols_mv, dropped_cols = mv_col_handling(data, target=self.target, mv_threshold=self.mv_threshold, |
372
|
|
|
corr_thresh_features=self.corr_thresh_features, |
373
|
|
|
corr_thresh_target=self.corr_thresh_target, |
374
|
|
|
return_details=self.return_details) |
375
|
|
|
|
376
|
|
|
print(f'\nFeatures with MV-ratio > {self.mv_threshold}: {len(cols_mv)}') |
377
|
|
|
print('Features dropped:', len(dropped_cols), dropped_cols) |
378
|
|
|
|
379
|
|
|
return data |
380
|
|
|
|
381
|
|
|
|
382
|
|
|
def pool_duplicate_subsets(data, col_dupl_thresh=0.2, subset_thresh=0.2, min_col_pool=3, return_details=False): |
383
|
|
|
''' |
384
|
|
|
Checks for duplicates in subsets of columns and pools them. This reduced the number of columns in the data without \ |
385
|
|
|
loosing any information. Suitable columns are combined to subsets and tested for duplicates. In case sufficient \ |
386
|
|
|
duplicates can be found, the respective columns are aggregated into a 'pooled_var' column. Identical numbers in \ |
387
|
|
|
the 'pooled_var' column indicate identical information in the respective rows. |
388
|
|
|
|
389
|
|
|
Parameters |
390
|
|
|
---------- |
391
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
392
|
|
|
|
393
|
|
|
col_dupl_ratio: float, default 0.2 |
394
|
|
|
Columns with a ratio of duplicates higher than 'col_dupl_ratio' are considered in the further analysis. \ |
395
|
|
|
Columns with a lower ratio are not considered for pooling. |
396
|
|
|
|
397
|
|
|
dupl_thresh: float, default 0.2 |
398
|
|
|
The first subset with a duplicate threshold higher than 'dupl_thresh' is chosen and aggregated. If no subset \ |
399
|
|
|
reaches the threshold, the algorithm continues with continuously smaller subsets until 'min_col_pool' is \ |
400
|
|
|
reached. |
401
|
|
|
|
402
|
|
|
min_col_pool: integer, default 3 |
403
|
|
|
Minimum number of columns to pool. The algorithm attempts to combine as many columns as possible to suitable \ |
404
|
|
|
subsets and stops when 'min_col_pool' is reached. |
405
|
|
|
|
406
|
|
|
return_details: bool, default False |
407
|
|
|
Provdies flexibility to return intermediary results. |
408
|
|
|
|
409
|
|
|
Returns: |
410
|
|
|
------- |
411
|
|
|
data: pd.DataFrame |
412
|
|
|
|
413
|
|
|
optional: |
414
|
|
|
subset_cols: List of columns used as subset. |
415
|
|
|
''' |
416
|
|
|
|
417
|
|
|
# Input validation |
418
|
|
|
_validate_input_range(col_dupl_thresh, 'col_dupl_thresh', 0, 1) |
419
|
|
|
_validate_input_range(subset_thresh, 'subset_thresh', 0, 1) |
420
|
|
|
_validate_input_range(min_col_pool, 'min_col_pool', 0, data.shape[1]) |
421
|
|
|
|
422
|
|
|
subset_cols = [] |
423
|
|
|
for i in range(data.shape[1]+1-min_col_pool): |
424
|
|
|
check_list = [] |
425
|
|
|
for col in data.columns: |
426
|
|
|
cdr = data.duplicated(subset=col).mean() |
427
|
|
|
if cdr > col_dupl_thresh: |
428
|
|
|
check_list.append(col) |
429
|
|
|
|
430
|
|
|
if len(check_list) > 0: |
431
|
|
|
combinations = itertools.combinations(check_list, len(check_list)-i) |
432
|
|
|
else: |
433
|
|
|
continue |
434
|
|
|
|
435
|
|
|
ratios = [] |
436
|
|
|
for comb in combinations: |
437
|
|
|
ratios.append(data[list(comb)].duplicated().mean()) |
438
|
|
|
|
439
|
|
|
max_ratio = max(ratios) |
440
|
|
|
max_idx = np.argmax(ratios) |
441
|
|
|
|
442
|
|
|
if max_ratio > subset_thresh: |
443
|
|
|
best_subset = itertools.islice(itertools.combinations( |
444
|
|
|
check_list, len(check_list)-i), max_idx, max_idx+1) |
445
|
|
|
best_subset = data[list(list(best_subset)[0])] |
446
|
|
|
subset_cols = best_subset.columns.tolist() |
447
|
|
|
|
448
|
|
|
unique_subset = best_subset.drop_duplicates().reset_index().rename(columns={'index': 'pooled_vars'}) |
449
|
|
|
data = data.merge(unique_subset, how='inner', on=best_subset.columns.tolist() |
450
|
|
|
).drop(columns=best_subset.columns.tolist()) |
451
|
|
|
data.index = pd.RangeIndex(len(data)) |
452
|
|
|
break |
453
|
|
|
|
454
|
|
|
return data, subset_cols |
455
|
|
|
|
456
|
|
|
|
457
|
|
|
class SubsetPooler(BaseEstimator, TransformerMixin): |
458
|
|
|
''' |
459
|
|
|
Wrapper for pool_duplicate_subsets(). Allows pool_duplicate_subsets() to be put into a pipeline with similar |
460
|
|
|
functions (e.g. using DataCleaner() or MVColHandler()). |
461
|
|
|
|
462
|
|
|
Parameters |
463
|
|
|
---------- |
464
|
|
|
col_dupl_ratio: float, default 0.2 |
465
|
|
|
Columns with a ratio of duplicates higher than 'col_dupl_ratio' are considered in the further analysis. \ |
466
|
|
|
Columns with a lower ratio are not considered for pooling. |
467
|
|
|
|
468
|
|
|
dupl_thresh: float, default 0.2 |
469
|
|
|
The first subset with a duplicate threshold higher than 'dupl_thresh' is chosen and aggregated. If no subset \ |
470
|
|
|
reaches the threshold, the algorithm continues with continuously smaller subsets until 'min_col_pool' is \ |
471
|
|
|
reached. |
472
|
|
|
|
473
|
|
|
min_col_pool: integer, default 3 |
474
|
|
|
Minimum number of columns to pool. The algorithm attempts to combine as many columns as possible to suitable \ |
475
|
|
|
subsets and stops when 'min_col_pool' is reached. |
476
|
|
|
|
477
|
|
|
return_details: bool, default False |
478
|
|
|
Provdies flexibility to return intermediary results. |
479
|
|
|
|
480
|
|
|
Returns: |
481
|
|
|
------- |
482
|
|
|
data: pd.DataFrame |
483
|
|
|
''' |
484
|
|
|
|
485
|
|
|
def __init__(self, col_dupl_thresh=0.2, subset_thresh=0.2, min_col_pool=3, return_details=True): |
486
|
|
|
self.col_dupl_thresh = col_dupl_thresh |
487
|
|
|
self.subset_thresh = subset_thresh |
488
|
|
|
self.min_col_pool = min_col_pool |
489
|
|
|
self.return_details = return_details |
490
|
|
|
|
491
|
|
|
def fit(self, data, target=None): |
492
|
|
|
return self |
493
|
|
|
|
494
|
|
|
def transform(self, data, target=None): |
495
|
|
|
data, subset_cols = pool_duplicate_subsets( |
496
|
|
|
data, col_dupl_thresh=0.2, subset_thresh=0.2, min_col_pool=3, return_details=True) |
497
|
|
|
|
498
|
|
|
print('Combined columns:', len(subset_cols), subset_cols) |
499
|
|
|
|
500
|
|
|
return data |
501
|
|
|
|