|
1
|
|
|
""" |
|
2
|
|
|
Utilities and auxiliary functions. |
|
3
|
|
|
|
|
4
|
|
|
:author: Andreas Kanz |
|
5
|
|
|
|
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
# Imports |
|
9
|
|
|
import numpy as np |
|
10
|
|
|
import pandas as pd |
|
11
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
12
|
|
|
|
|
13
|
|
|
|
|
14
|
|
|
def _corr_selector( |
|
15
|
|
|
corr: Union[pd.Series, pd.DataFrame], |
|
16
|
|
|
split: Optional[ |
|
17
|
|
|
str |
|
18
|
|
|
] = None, # Optional[Literal["pos", "neg", "above", "below"]] = None, |
|
19
|
|
|
threshold: float = 0, |
|
20
|
|
|
) -> Union[pd.Series, pd.DataFrame]: |
|
21
|
|
|
"""[summary] |
|
22
|
|
|
|
|
23
|
|
|
Parameters |
|
24
|
|
|
---------- |
|
25
|
|
|
corr : Union[pd.Series, pd.DataFrame] |
|
26
|
|
|
pd.Series or pd.DataFrame of correlations |
|
27
|
|
|
split : Optional[str], optional |
|
28
|
|
|
Type of split performed, by default None |
|
29
|
|
|
* {None, 'pos', 'neg', 'above', 'below'} |
|
30
|
|
|
threshold : float, optional |
|
31
|
|
|
Value between 0 and 1 to set the correlation threshold, by default 0 |
|
32
|
|
|
|
|
33
|
|
|
Returns |
|
34
|
|
|
------- |
|
35
|
|
|
pd.DataFrame |
|
36
|
|
|
List or matrix of (filtered) correlations |
|
37
|
|
|
""" |
|
38
|
|
|
|
|
39
|
|
|
if split == "pos": |
|
40
|
|
|
corr = corr.where((corr >= threshold) & (corr > 0)) |
|
41
|
|
|
print( |
|
42
|
|
|
'Displaying positive correlations. Use "threshold" to further limit the results.' |
|
43
|
|
|
) |
|
44
|
|
|
elif split == "neg": |
|
45
|
|
|
corr = corr.where((corr <= threshold) & (corr < 0)) |
|
46
|
|
|
print( |
|
47
|
|
|
'Displaying negative correlations. Use "threshold" to further limit the results.' |
|
48
|
|
|
) |
|
49
|
|
|
elif split == "above": |
|
50
|
|
|
corr = corr.where(np.abs(corr) >= threshold) |
|
51
|
|
|
print(f"Displaying absolute correlations above the threshold ({threshold}).") |
|
52
|
|
|
elif split == "below": |
|
53
|
|
|
corr = corr.where(np.abs(corr) <= threshold) |
|
54
|
|
|
print(f"Displaying absolute correlations below the threshold ({threshold}).") |
|
55
|
|
|
|
|
56
|
|
|
return corr |
|
57
|
|
|
|
|
58
|
|
|
|
|
59
|
|
|
def _diff_report( |
|
60
|
|
|
data: pd.DataFrame, |
|
61
|
|
|
data_cleaned: pd.DataFrame, |
|
62
|
|
|
dupl_rows: Optional[List[Union[str, int]]] = None, |
|
63
|
|
|
single_val_cols: Optional[List[str]] = None, |
|
64
|
|
|
show: Optional[str] = "changes", # Optional[Literal["all", "changes"]] = "changes", |
|
65
|
|
|
) -> None: |
|
66
|
|
|
""" Provides information about changes between two datasets, such as dropped rows and columns, memory usage and \ |
|
67
|
|
|
missing values. |
|
68
|
|
|
|
|
69
|
|
|
Parameters |
|
70
|
|
|
---------- |
|
71
|
|
|
data : pd.DataFrame |
|
72
|
|
|
2D dataset that can be coerced into Pandas DataFrame. Input the initial dataset here |
|
73
|
|
|
data_cleaned : pd.DataFrame |
|
74
|
|
|
2D dataset that can be coerced into Pandas DataFrame. Input the cleaned / updated dataset here |
|
75
|
|
|
dupl_rows : Optional[List[Union[str, int]]], optional |
|
76
|
|
|
List of duplicate row indices, by default None |
|
77
|
|
|
single_val_cols : Optional[List[str]], optional |
|
78
|
|
|
List of single-valued column indices. I.e. columns where all cells contain the same value. \ |
|
79
|
|
|
NaNs count as a separate value, by default None |
|
80
|
|
|
show : str, optional |
|
81
|
|
|
{'all', 'changes', None}, by default "changes" |
|
82
|
|
|
Specify verbosity of the output: |
|
83
|
|
|
* 'all': Print information about the data before and after cleaning as well as information about changes \ |
|
84
|
|
|
and memory usage (deep). Please be aware, that this can slow down the function by quite a bit. |
|
85
|
|
|
* 'changes': Print out differences in the data before and after cleaning. |
|
86
|
|
|
* None: No information about the data and the data cleaning is printed. |
|
87
|
|
|
|
|
88
|
|
|
Returns |
|
89
|
|
|
------- |
|
90
|
|
|
None |
|
91
|
|
|
Print statement highlighting the datasets or changes between the two datasets. |
|
92
|
|
|
""" |
|
93
|
|
|
|
|
94
|
|
|
if show in ["changes", "all"]: |
|
95
|
|
|
dupl_rows = [] if dupl_rows is None else dupl_rows.copy() |
|
96
|
|
|
single_val_cols = [] if single_val_cols is None else single_val_cols.copy() |
|
97
|
|
|
data_mem = _memory_usage(data, deep=False) |
|
98
|
|
|
data_cl_mem = _memory_usage(data_cleaned, deep=False) |
|
99
|
|
|
data_mv_tot = _missing_vals(data)["mv_total"] |
|
100
|
|
|
data_cl_mv_tot = _missing_vals(data_cleaned)["mv_total"] |
|
101
|
|
|
|
|
102
|
|
|
if show == "all": |
|
103
|
|
|
data_mem = _memory_usage(data, deep=True) |
|
104
|
|
|
data_cl_mem = _memory_usage(data_cleaned, deep=True) |
|
105
|
|
|
print("Before data cleaning:\n") |
|
106
|
|
|
print(f"dtypes:\n{data.dtypes.value_counts()}") |
|
107
|
|
|
print(f"\nNumber of rows: {data.shape[0]}") |
|
108
|
|
|
print(f"Number of cols: {data.shape[1]}") |
|
109
|
|
|
print(f"Missing values: {data_mv_tot}") |
|
110
|
|
|
print(f"Memory usage: {data_mem} MB") |
|
111
|
|
|
print("_______________________________________________________\n") |
|
112
|
|
|
print("After data cleaning:\n") |
|
113
|
|
|
print(f"dtypes:\n{data_cleaned.dtypes.value_counts()}") |
|
114
|
|
|
print(f"\nNumber of rows: {data_cleaned.shape[0]}") |
|
115
|
|
|
print(f"Number of cols: {data_cleaned.shape[1]}") |
|
116
|
|
|
print(f"Missing values: {data_cl_mv_tot}") |
|
117
|
|
|
print(f"Memory usage: {data_cl_mem} MB") |
|
118
|
|
|
print("_______________________________________________________\n") |
|
119
|
|
|
|
|
120
|
|
|
print( |
|
121
|
|
|
f"Shape of cleaned data: {data_cleaned.shape} - Remaining NAs: {data_cl_mv_tot}" |
|
122
|
|
|
) |
|
123
|
|
|
print(f"\nChanges:") |
|
124
|
|
|
print(f"Dropped rows: {data.shape[0]-data_cleaned.shape[0]}") |
|
125
|
|
|
print(f" of which {len(dupl_rows)} duplicates. (Rows: {dupl_rows})") |
|
126
|
|
|
print(f"Dropped columns: {data.shape[1]-data_cleaned.shape[1]}") |
|
127
|
|
|
print( |
|
128
|
|
|
f" of which {len(single_val_cols)} single valued. (Columns: {single_val_cols})" |
|
129
|
|
|
) |
|
130
|
|
|
print(f"Dropped missing values: {data_mv_tot-data_cl_mv_tot}") |
|
131
|
|
|
mem_change = data_mem - data_cl_mem |
|
132
|
|
|
print( |
|
133
|
|
|
f"Reduced memory by at least: {round(mem_change,2)} MB (-{round(100*mem_change/data_mem,1)}%)" |
|
134
|
|
|
) |
|
135
|
|
|
|
|
136
|
|
|
|
|
137
|
|
|
def _drop_duplicates(data: pd.DataFrame) -> Tuple[pd.DataFrame, Any]: |
|
138
|
|
|
""" Provides information on and drops duplicate rows. |
|
139
|
|
|
|
|
140
|
|
|
Parameters |
|
141
|
|
|
---------- |
|
142
|
|
|
data : pd.DataFrame |
|
143
|
|
|
2D dataset that can be coerced into Pandas DataFrame |
|
144
|
|
|
|
|
145
|
|
|
Returns |
|
146
|
|
|
------- |
|
147
|
|
|
Tuple[pd.DataFrame, List] |
|
148
|
|
|
Deduplicated Pandas DataFrame and Index Object of rows dropped |
|
149
|
|
|
""" |
|
150
|
|
|
|
|
151
|
|
|
data = pd.DataFrame(data).copy() |
|
152
|
|
|
dupl_rows = data[data.duplicated()].index.tolist() |
|
153
|
|
|
data = data.drop(dupl_rows, axis="index") |
|
154
|
|
|
|
|
155
|
|
|
return data, dupl_rows |
|
156
|
|
|
|
|
157
|
|
|
|
|
158
|
|
|
def _memory_usage(data: pd.DataFrame, deep: bool = True) -> float: |
|
159
|
|
|
""" Gives the total memory usage in megabytes. |
|
160
|
|
|
|
|
161
|
|
|
Parameters |
|
162
|
|
|
---------- |
|
163
|
|
|
data : pd.DataFrame |
|
164
|
|
|
2D dataset that can be coerced into Pandas DataFrame |
|
165
|
|
|
deep : bool, optional |
|
166
|
|
|
Runs a deep analysis of the memory usage, by default True |
|
167
|
|
|
|
|
168
|
|
|
Returns |
|
169
|
|
|
------- |
|
170
|
|
|
float |
|
171
|
|
|
Memory usage in megabytes |
|
172
|
|
|
""" |
|
173
|
|
|
|
|
174
|
|
|
data = pd.DataFrame(data).copy() |
|
175
|
|
|
memory_usage = round( |
|
176
|
|
|
data.memory_usage(index=True, deep=deep).sum() / (1024 ** 2), 2 |
|
177
|
|
|
) |
|
178
|
|
|
|
|
179
|
|
|
return memory_usage |
|
180
|
|
|
|
|
181
|
|
|
|
|
182
|
|
|
def _missing_vals(data: pd.DataFrame) -> Dict[str, Any]: |
|
183
|
|
|
""" Gives metrics of missing values in the dataset. |
|
184
|
|
|
|
|
185
|
|
|
Parameters |
|
186
|
|
|
---------- |
|
187
|
|
|
data : pd.DataFrame |
|
188
|
|
|
2D dataset that can be coerced into Pandas DataFrame |
|
189
|
|
|
|
|
190
|
|
|
Returns |
|
191
|
|
|
------- |
|
192
|
|
|
Dict[str, float] |
|
193
|
|
|
mv_total: float, number of missing values in the entire dataset |
|
194
|
|
|
mv_rows: float, number of missing values in each row |
|
195
|
|
|
mv_cols: float, number of missing values in each column |
|
196
|
|
|
mv_rows_ratio: float, ratio of missing values for each row |
|
197
|
|
|
mv_cols_ratio: float, ratio of missing values for each column |
|
198
|
|
|
""" |
|
199
|
|
|
|
|
200
|
|
|
data = pd.DataFrame(data).copy() |
|
201
|
|
|
mv_rows = data.isna().sum(axis=1) |
|
202
|
|
|
mv_cols = data.isna().sum(axis=0) |
|
203
|
|
|
mv_total = data.isna().sum().sum() |
|
204
|
|
|
mv_rows_ratio = mv_rows / data.shape[1] |
|
205
|
|
|
mv_cols_ratio = mv_cols / data.shape[0] |
|
206
|
|
|
|
|
207
|
|
|
return { |
|
208
|
|
|
"mv_total": mv_total, |
|
209
|
|
|
"mv_rows": mv_rows, |
|
210
|
|
|
"mv_cols": mv_cols, |
|
211
|
|
|
"mv_rows_ratio": mv_rows_ratio, |
|
212
|
|
|
"mv_cols_ratio": mv_cols_ratio, |
|
213
|
|
|
} |
|
214
|
|
|
|
|
215
|
|
|
|
|
216
|
|
|
def _validate_input_bool(value, desc): |
|
217
|
|
|
if not (isinstance(value, bool)): |
|
218
|
|
|
raise TypeError( |
|
219
|
|
|
f"Input value for '{desc}' is {type(value)} but should be a boolean." |
|
220
|
|
|
) |
|
221
|
|
|
|
|
222
|
|
|
|
|
223
|
|
|
def _validate_input_int(value, desc): |
|
224
|
|
|
if not isinstance(value, int): |
|
225
|
|
|
raise TypeError( |
|
226
|
|
|
f"Input value for '{desc}' is {type(value)} but should be an integer." |
|
227
|
|
|
) |
|
228
|
|
|
|
|
229
|
|
|
|
|
230
|
|
|
def _validate_input_range(value, desc, lower, upper): |
|
231
|
|
|
if value < lower or value > upper: |
|
232
|
|
|
raise ValueError( |
|
233
|
|
|
f"'{desc}' = {value} but should be within the range {lower} <= '{desc}' <= {upper}." |
|
234
|
|
|
) |
|
235
|
|
|
|
|
236
|
|
|
|
|
237
|
|
|
def _validate_input_smaller(value1, value2, desc): |
|
238
|
|
|
if value1 > value2: |
|
239
|
|
|
raise ValueError( |
|
240
|
|
|
f"The first input for '{desc}' should be smaller or equal to the second input." |
|
241
|
|
|
) |
|
242
|
|
|
|
|
243
|
|
|
|
|
244
|
|
|
def _validate_input_sum(limit, desc, *args): |
|
245
|
|
|
if sum(args) > limit: |
|
246
|
|
|
raise ValueError( |
|
247
|
|
|
f"The sum of imput values provided for '{desc}' should be less or equal to {limit}." |
|
248
|
|
|
) |
|
249
|
|
|
|