1
|
|
|
''' |
2
|
|
|
Utilities and auxiliary functions. |
3
|
|
|
|
4
|
|
|
:author: Andreas Kanz |
5
|
|
|
|
6
|
|
|
''' |
7
|
|
|
|
8
|
|
|
# Imports |
9
|
|
|
import numpy as np |
10
|
|
|
import pandas as pd |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def _corr_selector(corr, split=None, threshold=0): |
14
|
|
|
''' |
15
|
|
|
Select correlations based on the provided parameters. |
16
|
|
|
|
17
|
|
|
Parameters |
18
|
|
|
---------- |
19
|
|
|
corr: List or matrix of correlations. |
20
|
|
|
|
21
|
|
|
split: {None, 'pos', 'neg', 'high', 'low'}, default None |
22
|
|
|
Type of split to be performed. |
23
|
|
|
|
24
|
|
|
threshold: float, default 0 |
25
|
|
|
Value between 0 <= threshold <= 1 |
26
|
|
|
|
27
|
|
|
Returns: |
28
|
|
|
------- |
29
|
|
|
corr: List or matrix of (filtered) correlations. |
30
|
|
|
''' |
31
|
|
|
|
32
|
|
|
if split == 'pos': |
33
|
|
|
corr = corr.where((corr >= threshold) & (corr > 0)) |
34
|
|
|
print('Displaying positive correlations. Use "threshold" to further limit the results.') |
35
|
|
|
elif split == 'neg': |
36
|
|
|
corr = corr.where((corr <= threshold) & (corr < 0)) |
37
|
|
|
print('Displaying negative correlations. Use "threshold" to further limit the results.') |
38
|
|
|
elif split == 'high': |
39
|
|
|
corr = corr.where(np.abs(corr) >= threshold) |
40
|
|
|
print(f'Displaying absolute correlations above the threshold ({threshold}).') |
41
|
|
|
elif split == 'low': |
42
|
|
|
corr = corr.where(np.abs(corr) <= threshold) |
43
|
|
|
print(f'Displaying absolute correlations below the threshold ({threshold}).') |
44
|
|
|
else: |
45
|
|
|
corr = corr |
46
|
|
|
|
47
|
|
|
return corr |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
def _diff_report(data, data_cleaned, dupl_rows=None, single_val_cols=None, show='changes'): |
51
|
|
|
''' |
52
|
|
|
Perform initial data cleaning tasks on a dataset, such as dropping single valued and empty rows, empty \ |
53
|
|
|
columns as well as optimizing the datatypes. |
54
|
|
|
|
55
|
|
|
Parameters |
56
|
|
|
---------- |
57
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
58
|
|
|
Input the initial dataset here. |
59
|
|
|
|
60
|
|
|
data_cleaned: 2D dataset that can be coerced into Pandas DataFrame. |
61
|
|
|
Input the cleaned / updated dataset here. |
62
|
|
|
|
63
|
|
|
dupl_rows: list, default None |
64
|
|
|
List of duplicate row indices. |
65
|
|
|
|
66
|
|
|
single_val_cols: list, default None |
67
|
|
|
List of single-valued column indices. I.e. columns where all cells contain the same value. \ |
68
|
|
|
NaNs count as a separate value. |
69
|
|
|
|
70
|
|
|
show: {'all', 'changes', None} default 'all' |
71
|
|
|
Specify verbosity of the output. |
72
|
|
|
* 'all': Print information about the data before and after cleaning as well as information about changes. |
73
|
|
|
* 'changes': Print out differences in the data before and after cleaning. |
74
|
|
|
* None: No information about the data and the data cleaning is printed. |
75
|
|
|
|
76
|
|
|
Returns: |
77
|
|
|
------- |
78
|
|
|
Print statement highlighting the datasets or changes between the two datasets. |
79
|
|
|
|
80
|
|
|
''' |
81
|
|
|
|
82
|
|
|
if show in ['changes', 'all']: |
83
|
|
|
dupl_rows = [] if dupl_rows is None else dupl_rows.copy() |
84
|
|
|
single_val_cols = [] if single_val_cols is None else single_val_cols.copy() |
85
|
|
|
data_mem = _memory_usage(data) |
86
|
|
|
data_cl_mem = _memory_usage(data_cleaned) |
87
|
|
|
data_mv_tot = _missing_vals(data)['mv_total'] |
88
|
|
|
data_cl_mv_tot = _missing_vals(data_cleaned)['mv_total'] |
89
|
|
|
|
90
|
|
|
if show == 'all': |
91
|
|
|
print('Before data cleaning:\n') |
92
|
|
|
print(f'dtypes:\n{data.dtypes.value_counts()}') |
93
|
|
|
print(f'\nNumber of rows: {data.shape[0]}') |
94
|
|
|
print(f'Number of cols: {data.shape[1]}') |
95
|
|
|
print(f'Missing values: {data_mv_tot}') |
96
|
|
|
print(f'Memory usage: {data_mem} KB') |
97
|
|
|
print('_______________________________________________________\n') |
98
|
|
|
print('After data cleaning:\n') |
99
|
|
|
print(f'dtypes:\n{data_cleaned.dtypes.value_counts()}') |
100
|
|
|
print(f'\nNumber of rows: {data_cleaned.shape[0]}') |
101
|
|
|
print(f'Number of cols: {data_cleaned.shape[1]}') |
102
|
|
|
print(f'Missing values: {data_cl_mv_tot}') |
103
|
|
|
print(f'Memory usage: {data_cl_mem} KB') |
104
|
|
|
print('_______________________________________________________\n') |
105
|
|
|
|
106
|
|
|
print(f'Shape of cleaned data: {data_cleaned.shape} - Remaining NAs: {data_cl_mv_tot}') |
107
|
|
|
print(f'\nChanges:') |
108
|
|
|
print(f'Dropped rows: {data.shape[0]-data_cleaned.shape[0]}') |
109
|
|
|
print(f' of which {len(dupl_rows)} duplicates. (Rows: {dupl_rows})') |
110
|
|
|
print(f'Dropped columns: {data.shape[1]-data_cleaned.shape[1]}') |
111
|
|
|
print(f' of which {len(single_val_cols)} single valued. (Columns: {single_val_cols})') |
112
|
|
|
print(f'Dropped missing values: {data_mv_tot-data_cl_mv_tot}') |
113
|
|
|
mem_change = data_mem-data_cl_mem |
114
|
|
|
print(f'Reduced memory by: {round(mem_change,2)} KB (-{round(100*mem_change/data_mem,1)}%)') |
115
|
|
|
|
116
|
|
|
|
117
|
|
|
def _drop_duplicates(data): |
118
|
|
|
''' |
119
|
|
|
Provides information and drops duplicate rows. |
120
|
|
|
|
121
|
|
|
Parameters |
122
|
|
|
---------- |
123
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
124
|
|
|
|
125
|
|
|
Returns |
126
|
|
|
------- |
127
|
|
|
data: Deduplicated Pandas DataFrame |
128
|
|
|
rows_dropped: Index Object of rows dropped. |
129
|
|
|
''' |
130
|
|
|
|
131
|
|
|
data = pd.DataFrame(data).copy() |
132
|
|
|
dupl_rows = data[data.duplicated()].index.tolist() |
133
|
|
|
data = data.drop(dupl_rows, axis='index') |
134
|
|
|
|
135
|
|
|
return data, dupl_rows |
136
|
|
|
|
137
|
|
|
|
138
|
|
|
def _memory_usage(data): |
139
|
|
|
''' |
140
|
|
|
Gives the total memory usage in kilobytes. |
141
|
|
|
|
142
|
|
|
Parameters |
143
|
|
|
---------- |
144
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
145
|
|
|
|
146
|
|
|
Returns |
147
|
|
|
------- |
148
|
|
|
memory_usage: float |
149
|
|
|
''' |
150
|
|
|
|
151
|
|
|
data = pd.DataFrame(data).copy() |
152
|
|
|
memory_usage = round(data.memory_usage(index=True, deep=True).sum()/1024, 2) |
153
|
|
|
|
154
|
|
|
return memory_usage |
155
|
|
|
|
156
|
|
|
|
157
|
|
|
def _missing_vals(data): |
158
|
|
|
''' |
159
|
|
|
Gives metrics of missing values in the dataset. |
160
|
|
|
|
161
|
|
|
Parameters |
162
|
|
|
---------- |
163
|
|
|
data: 2D dataset that can be coerced into Pandas DataFrame. |
164
|
|
|
|
165
|
|
|
Returns |
166
|
|
|
------- |
167
|
|
|
mv_total: float, number of missing values in the entire dataset |
168
|
|
|
mv_rows: float, number of missing values in each row |
169
|
|
|
mv_cols: float, number of missing values in each column |
170
|
|
|
mv_rows_ratio: float, ratio of missing values for each row |
171
|
|
|
mv_cols_ratio: float, ratio of missing values for each column |
172
|
|
|
''' |
173
|
|
|
|
174
|
|
|
data = pd.DataFrame(data).copy() |
175
|
|
|
mv_rows = data.isna().sum(axis=1) |
176
|
|
|
mv_cols = data.isna().sum(axis=0) |
177
|
|
|
mv_total = data.isna().sum().sum() |
178
|
|
|
mv_rows_ratio = mv_rows/data.shape[1] |
179
|
|
|
mv_cols_ratio = mv_cols/data.shape[0] |
180
|
|
|
|
181
|
|
|
return {'mv_total': mv_total, |
182
|
|
|
'mv_rows': mv_rows, |
183
|
|
|
'mv_cols': mv_cols, |
184
|
|
|
'mv_rows_ratio': mv_rows_ratio, |
185
|
|
|
'mv_cols_ratio': mv_cols_ratio} |
186
|
|
|
|
187
|
|
|
|
188
|
|
|
def _validate_input_bool(value, desc): |
189
|
|
|
if not(isinstance(value, bool)): |
190
|
|
|
raise TypeError(f'Input value for {desc} is {type(value)} but should be a boolean.') |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
def _validate_input_int(value, desc): |
194
|
|
|
if type(value) != int: |
195
|
|
|
raise TypeError(f'Input value for {desc} is {type(value)} but should be an integer.') |
196
|
|
|
|
197
|
|
|
|
198
|
|
|
def _validate_input_range(value, desc, lower, upper): |
199
|
|
|
if value < lower or value > upper: |
200
|
|
|
raise ValueError( |
201
|
|
|
f'Input value for {desc} is {value} but should be in the range {lower} <= {desc} <= {upper}.') |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
def _validate_input_smaller(value1, value2, desc): |
205
|
|
|
if value1 > value2: |
206
|
|
|
raise ValueError(f'The first input for {desc} should be smaller or equal to the second input.') |
207
|
|
|
|