GitHub Access Token became invalid

It seems like the GitHub access token used for retrieving details about this repository from GitHub became invalid. This might prevent certain types of inspections from being run (in particular, everything related to pull requests).
Please ask an admin of your repository to re-new the access token on this website.

klib.scripts.performance   A
last analyzed

Complexity

Total Complexity 7

Size/Duplication

Total Lines 77
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 50
dl 0
loc 77
rs 10
c 0
b 0
f 0
wmc 7

6 Functions

Rating   Name   Duplication   Size   Complexity  
A main() 0 18 2
A time_cat_plot() 0 3 1
A time_dist_plot() 0 3 1
A timer() 0 8 1
A time_data_cleaning() 0 3 1
A time_missingval_plot() 0 3 1
1
"""Measuring the performance of key functionality.
2
3
:author: Andreas Kanz
4
"""
5
6
import functools
7
from pathlib import Path
8
from time import perf_counter
9
10
import matplotlib.pyplot as plt
11
import pandas as pd
12
13
import klib
14
15
# Paths
16
base_path = Path(__file__).resolve().parents[3]
17
print(base_path)
18
data_path = base_path / "examples"
19
20
# Data Import
21
filepath = data_path / "NFL_DATASET.csv"
22
data = pd.read_csv(filepath)
23
24
25
def timer(func):
26
    @functools.wraps(func)
27
    def wrapper(*args, **kwargs):
28
        time_start = perf_counter()
29
        func(*args, **kwargs)
30
        return perf_counter() - time_start
31
32
    return wrapper
33
34
35
@timer
36
def time_data_cleaning():
37
    klib.data_cleaning(data, show=None)
38
39
40
@timer
41
def time_missingval_plot():
42
    klib.missingval_plot(data)
43
44
45
@timer
46
def time_dist_plot():
47
    klib.dist_plot(data.iloc[:, :5])
48
49
50
@timer
51
def time_cat_plot():
52
    klib.cat_plot(data)
53
54
55
def main():
56
    df_times = pd.DataFrame()
57
    df_times["data_cleaning"] = pd.Series([time_data_cleaning() for _ in range(12)])
58
    df_times["missingval_plot"] = pd.Series([time_missingval_plot() for _ in range(7)])
59
    df_times["dist_plot"] = pd.Series([time_dist_plot() for _ in range(7)])
60
    df_times["cat_plot"] = pd.Series([time_cat_plot() for _ in range(7)])
61
    df_times = df_times.fillna(df_times.mean())
62
    fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(14, 7))
63
    reference_values = [5, 10, 10, 10]
64
65
    for i, (col, ref) in enumerate(
66
        zip(df_times.columns, reference_values, strict=True),
67
    ):
68
        ax[i].boxplot(df_times[col])
69
        ax[i].set_title(" ".join(col.split("_")).title())
70
        ax[i].axhline(ref)
71
    fig.suptitle("Performance", fontsize=16)
72
    fig.savefig("boxplots.png")
73
74
75
if __name__ == "__main__":
76
    main()
77