|
1
|
|
|
from __future__ import annotations |
|
2
|
|
|
|
|
3
|
|
|
import io |
|
4
|
|
|
import sys |
|
5
|
|
|
import unittest |
|
6
|
|
|
|
|
7
|
|
|
import numpy as np |
|
8
|
|
|
import pandas as pd |
|
9
|
|
|
|
|
10
|
|
|
from klib.clean import clean_column_names |
|
11
|
|
|
from klib.clean import convert_datatypes |
|
12
|
|
|
from klib.clean import data_cleaning |
|
13
|
|
|
from klib.clean import drop_missing |
|
14
|
|
|
from klib.clean import pool_duplicate_subsets |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class Test_clean_column_names(unittest.TestCase): |
|
18
|
|
|
@classmethod |
|
19
|
|
|
def setUpClass(cls) -> None: |
|
20
|
|
|
cls.df1 = pd.DataFrame( |
|
21
|
|
|
{ |
|
22
|
|
|
"Asd 5$ & (3€)": [1, 2, 3], |
|
23
|
|
|
"3+3": [2, 3, 4], |
|
24
|
|
|
"AsdFer #9": [3, 4, 5], |
|
25
|
|
|
'"asdäöüß"': [5, 6, 7], |
|
26
|
|
|
"dupli": [5, 6, 8], |
|
27
|
|
|
"also": [9, 2, 7], |
|
28
|
|
|
"-ä-__________!?:;some/(... \n ..))(++$%/name/ -.....": [2, 3, 7], |
|
29
|
|
|
}, |
|
30
|
|
|
) |
|
31
|
|
|
cls.df2 = pd.DataFrame( |
|
32
|
|
|
{ |
|
33
|
|
|
"dupli": [3, 2, 1], |
|
34
|
|
|
"also": [4, 5, 7], |
|
35
|
|
|
"verylongColumnNamesareHardtoRead": [9, 2, 7], |
|
36
|
|
|
"< #total@": [2, 6, 4], |
|
37
|
|
|
"count >= 10": [6, 3, 2], |
|
38
|
|
|
}, |
|
39
|
|
|
) |
|
40
|
|
|
cls.df_clean_column_names = pd.concat([cls.df1, cls.df2], axis=1) |
|
41
|
|
|
|
|
42
|
|
|
def test_clean_column_names(self) -> None: |
|
43
|
|
|
expected_results = [ |
|
44
|
|
|
"asd_5_dollar_and_3_euro", |
|
45
|
|
|
"3_plus_3", |
|
46
|
|
|
"asd_fer_hash_9", |
|
47
|
|
|
"asdaeoeuess", |
|
48
|
|
|
"dupli", |
|
49
|
|
|
"also", |
|
50
|
|
|
"ae_some_plus_plus_dollar_percent_name", |
|
51
|
|
|
"dupli_7", |
|
52
|
|
|
"also_8", |
|
53
|
|
|
"verylong_column_namesare_hardto_read", |
|
54
|
|
|
"smaller_hash_total_at", |
|
55
|
|
|
"count_larger_equal_10", |
|
56
|
|
|
] |
|
57
|
|
|
for i, _ in enumerate(expected_results): |
|
58
|
|
|
assert clean_column_names(self.df_clean_column_names).columns[i] == expected_results[i] |
|
59
|
|
|
for i, _ in enumerate(expected_results): |
|
60
|
|
|
assert ( |
|
61
|
|
|
clean_column_names(self.df_clean_column_names, hints=False).columns[i] |
|
62
|
|
|
== expected_results[i] |
|
63
|
|
|
) |
|
64
|
|
|
|
|
65
|
|
|
def test_clean_column_names_prints(self) -> None: |
|
66
|
|
|
captured_output = io.StringIO() |
|
67
|
|
|
sys.stdout = captured_output |
|
68
|
|
|
clean_column_names(self.df_clean_column_names, hints=True) |
|
69
|
|
|
sys.stdout = sys.__stdout__ |
|
70
|
|
|
assert captured_output.getvalue() == ( |
|
71
|
|
|
"(\"Duplicate column names detected! Columns with index [7, 8] and names ['dupli', 'also'] have been renamed to ['dupli_7', 'also_8'].\", \"Long column names detected (>25 characters). Consider renaming the following columns ['ae_some_plus_plus_dollar_percent_name', 'verylong_column_namesare_hardto_read'].\")\n" |
|
72
|
|
|
) |
|
73
|
|
|
|
|
74
|
|
|
|
|
75
|
|
|
class Test_drop_missing(unittest.TestCase): |
|
76
|
|
|
@classmethod |
|
77
|
|
|
def setUpClass(cls) -> None: |
|
78
|
|
|
cls.df_data_drop = pd.DataFrame( |
|
79
|
|
|
[ |
|
80
|
|
|
[np.nan, np.nan, np.nan, np.nan, np.nan], |
|
81
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA, pd.NA], |
|
82
|
|
|
[pd.NA, "b", "c", "d", "e"], |
|
83
|
|
|
[pd.NA, 6, 7, 8, 9], |
|
84
|
|
|
[pd.NA, 2, 3, 4, pd.NA], |
|
85
|
|
|
[pd.NA, 6, 7, pd.NA, pd.NA], |
|
86
|
|
|
], |
|
87
|
|
|
columns=["c1", "c2", "c3", "c4", "c5"], |
|
88
|
|
|
) |
|
89
|
|
|
|
|
90
|
|
|
def test_drop_missing(self) -> None: |
|
91
|
|
|
assert drop_missing(self.df_data_drop).shape == (4, 4) |
|
92
|
|
|
|
|
93
|
|
|
# Drop further columns based on threshold |
|
94
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_cols=0.5).shape == (4, 3) |
|
95
|
|
|
assert drop_missing( |
|
96
|
|
|
self.df_data_drop, |
|
97
|
|
|
drop_threshold_cols=0.5, |
|
98
|
|
|
col_exclude=["c1"], |
|
99
|
|
|
).shape == (4, 4) |
|
100
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_cols=0.49).shape == (4, 2) |
|
101
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_cols=0).shape == (0, 0) |
|
102
|
|
|
|
|
103
|
|
|
# Drop further rows based on threshold |
|
104
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_rows=0.67).shape == (4, 4) |
|
105
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_rows=0.5).shape == (4, 4) |
|
106
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_rows=0.49).shape == (3, 4) |
|
107
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_rows=0.25).shape == (3, 4) |
|
108
|
|
|
assert drop_missing(self.df_data_drop, drop_threshold_rows=0.24).shape == (2, 4) |
|
109
|
|
|
assert drop_missing( |
|
110
|
|
|
self.df_data_drop, |
|
111
|
|
|
drop_threshold_rows=0.24, |
|
112
|
|
|
col_exclude=["c1"], |
|
113
|
|
|
).shape == (2, 5) |
|
114
|
|
|
assert drop_missing( |
|
115
|
|
|
self.df_data_drop, |
|
116
|
|
|
drop_threshold_rows=0.24, |
|
117
|
|
|
col_exclude=["c2"], |
|
118
|
|
|
).shape == (2, 4) |
|
119
|
|
|
assert drop_missing( |
|
120
|
|
|
self.df_data_drop, |
|
121
|
|
|
drop_threshold_rows=0.51, |
|
122
|
|
|
col_exclude=["c1"], |
|
123
|
|
|
).shape == (3, 5) |
|
124
|
|
|
|
|
125
|
|
|
|
|
126
|
|
|
class Test_data_cleaning(unittest.TestCase): |
|
127
|
|
|
@classmethod |
|
128
|
|
|
def setUpClass(cls) -> None: |
|
129
|
|
|
cls.df_data_cleaning = pd.DataFrame( |
|
130
|
|
|
[ |
|
131
|
|
|
[np.nan, np.nan, np.nan, np.nan, np.nan, 1], |
|
132
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA, pd.NA, 1], |
|
133
|
|
|
[pd.NA, "b", 6, "d", "e", 1], |
|
134
|
|
|
[pd.NA, "b", 7, 8, 9, 1], |
|
135
|
|
|
[pd.NA, "c", 3, 4, pd.NA, 1], |
|
136
|
|
|
[pd.NA, "d", 7, pd.NA, pd.NA, 1], |
|
137
|
|
|
], |
|
138
|
|
|
columns=["c1", "c2", "c3", "c 4", "c5", "c6"], |
|
139
|
|
|
) |
|
140
|
|
|
|
|
141
|
|
|
def test_data_cleaning(self) -> None: |
|
142
|
|
|
assert data_cleaning(self.df_data_cleaning, show="all").shape == (5, 4) |
|
143
|
|
|
assert data_cleaning(self.df_data_cleaning, show=None).shape == (5, 4) |
|
144
|
|
|
|
|
145
|
|
|
assert data_cleaning(self.df_data_cleaning, col_exclude=["c6"]).shape == (5, 5) |
|
146
|
|
|
|
|
147
|
|
|
assert data_cleaning( |
|
148
|
|
|
self.df_data_cleaning, |
|
149
|
|
|
show="changes", |
|
150
|
|
|
clean_col_names=False, |
|
151
|
|
|
drop_duplicates=False, |
|
152
|
|
|
).columns.tolist() == ["c2", "c3", "c 4", "c5"] |
|
153
|
|
|
|
|
154
|
|
|
assert data_cleaning( |
|
155
|
|
|
self.df_data_cleaning, |
|
156
|
|
|
show="changes", |
|
157
|
|
|
clean_col_names=False, |
|
158
|
|
|
drop_duplicates=False, |
|
159
|
|
|
).columns.tolist() == ["c2", "c3", "c 4", "c5"] |
|
160
|
|
|
|
|
161
|
|
|
expected_results = ["string", "float32", "O", "O"] |
|
162
|
|
|
for i, _ in enumerate(expected_results): |
|
163
|
|
|
assert ( |
|
164
|
|
|
data_cleaning(self.df_data_cleaning, convert_dtypes=True).dtypes[i] |
|
165
|
|
|
== expected_results[i] |
|
166
|
|
|
) |
|
167
|
|
|
|
|
168
|
|
|
expected_results = ["O", "O", "O", "O"] |
|
169
|
|
|
for i, _ in enumerate(expected_results): |
|
170
|
|
|
assert ( |
|
171
|
|
|
data_cleaning(self.df_data_cleaning, convert_dtypes=False).dtypes[i] |
|
172
|
|
|
== expected_results[i] |
|
173
|
|
|
) |
|
174
|
|
|
|
|
175
|
|
|
expected_results = ["O", "O", "O", "O"] |
|
176
|
|
|
for i, _ in enumerate(expected_results): |
|
177
|
|
|
assert ( |
|
178
|
|
|
data_cleaning(self.df_data_cleaning, convert_dtypes=False).dtypes[i] |
|
179
|
|
|
== expected_results[i] |
|
180
|
|
|
) |
|
181
|
|
|
|
|
182
|
|
|
|
|
183
|
|
|
class Test_convert_dtypes(unittest.TestCase): |
|
184
|
|
|
@classmethod |
|
185
|
|
|
def setUpClass(cls) -> None: |
|
186
|
|
|
cls.df_data_convert = pd.DataFrame( |
|
187
|
|
|
[ |
|
188
|
|
|
[1, 7.0, "y", "x", pd.NA, "v"], |
|
189
|
|
|
[3, 8.0, "d", "e", pd.NA, "v"], |
|
190
|
|
|
[5, 7.0, "o", "z", pd.NA, "v"], |
|
191
|
|
|
[1, 7.0, "u", "f", pd.NA, "p"], |
|
192
|
|
|
[1, 7.0, "u", "f", pd.NA, "p"], |
|
193
|
|
|
[2, 7.0, "g", "a", pd.NA, "p"], |
|
194
|
|
|
], |
|
195
|
|
|
) |
|
196
|
|
|
|
|
197
|
|
|
def test_convert_dtypes(self) -> None: |
|
198
|
|
|
expected_results = [ |
|
199
|
|
|
"int8", |
|
200
|
|
|
"float32", |
|
201
|
|
|
"string", |
|
202
|
|
|
"string", |
|
203
|
|
|
"category", |
|
204
|
|
|
"category", |
|
205
|
|
|
] |
|
206
|
|
|
for i, _ in enumerate(expected_results): |
|
207
|
|
|
assert ( |
|
208
|
|
|
convert_datatypes(self.df_data_convert, cat_threshold=0.4).dtypes[i] |
|
209
|
|
|
== expected_results[i] |
|
210
|
|
|
) |
|
211
|
|
|
|
|
212
|
|
|
expected_results = [ |
|
213
|
|
|
"int8", |
|
214
|
|
|
"float32", |
|
215
|
|
|
"string", |
|
216
|
|
|
"string", |
|
217
|
|
|
"object", |
|
218
|
|
|
"string", |
|
219
|
|
|
] |
|
220
|
|
|
for i, _ in enumerate(expected_results): |
|
221
|
|
|
assert convert_datatypes(self.df_data_convert).dtypes[i] == expected_results[i] |
|
222
|
|
|
|
|
223
|
|
|
expected_results = [ |
|
224
|
|
|
"int8", |
|
225
|
|
|
"float32", |
|
226
|
|
|
"string", |
|
227
|
|
|
"string", |
|
228
|
|
|
"object", |
|
229
|
|
|
"category", |
|
230
|
|
|
] |
|
231
|
|
|
for i, _ in enumerate(expected_results): |
|
232
|
|
|
assert ( |
|
233
|
|
|
convert_datatypes( |
|
234
|
|
|
self.df_data_convert, |
|
235
|
|
|
cat_threshold=0.5, |
|
236
|
|
|
cat_exclude=[4], |
|
237
|
|
|
).dtypes[i] |
|
238
|
|
|
== expected_results[i] |
|
239
|
|
|
) |
|
240
|
|
|
|
|
241
|
|
|
expected_results = [ |
|
242
|
|
|
"int8", |
|
243
|
|
|
"float32", |
|
244
|
|
|
"string", |
|
245
|
|
|
"category", |
|
246
|
|
|
"object", |
|
247
|
|
|
"category", |
|
248
|
|
|
] |
|
249
|
|
|
for i, _ in enumerate(expected_results): |
|
250
|
|
|
assert ( |
|
251
|
|
|
convert_datatypes( |
|
252
|
|
|
self.df_data_convert, |
|
253
|
|
|
cat_threshold=0.95, |
|
254
|
|
|
cat_exclude=[2, 4], |
|
255
|
|
|
).dtypes[i] |
|
256
|
|
|
== expected_results[i] |
|
257
|
|
|
) |
|
258
|
|
|
|
|
259
|
|
|
expected_results = ["int8", "float32", "string", "string", "object", "string"] |
|
260
|
|
|
for i, _ in enumerate(expected_results): |
|
261
|
|
|
assert ( |
|
262
|
|
|
convert_datatypes( |
|
263
|
|
|
self.df_data_convert, |
|
264
|
|
|
category=False, |
|
265
|
|
|
cat_threshold=0.95, |
|
266
|
|
|
cat_exclude=[2, 4], |
|
267
|
|
|
).dtypes[i] |
|
268
|
|
|
== expected_results[i] |
|
269
|
|
|
) |
|
270
|
|
|
|
|
271
|
|
|
|
|
272
|
|
|
class Test_pool_duplicate_subsets(unittest.TestCase): |
|
273
|
|
|
@classmethod |
|
274
|
|
|
def setUpClass(cls) -> None: |
|
275
|
|
|
cls.df_data_subsets = pd.DataFrame( |
|
276
|
|
|
[ |
|
277
|
|
|
[1, 7, "d", "x", pd.NA, "v"], |
|
278
|
|
|
[1, 8, "d", "e", pd.NA, "v"], |
|
279
|
|
|
[2, 7, "g", "z", pd.NA, "v"], |
|
280
|
|
|
[1, 7, "u", "f", pd.NA, "p"], |
|
281
|
|
|
[1, 7, "u", "z", pd.NA, "p"], |
|
282
|
|
|
[2, 7, "g", "z", pd.NA, "p"], |
|
283
|
|
|
], |
|
284
|
|
|
columns=["c1", "c2", "c3", "c4", "c5", "c6"], |
|
285
|
|
|
) |
|
286
|
|
|
|
|
287
|
|
|
def test_pool_duplicate_subsets(self) -> None: |
|
288
|
|
|
assert pool_duplicate_subsets(self.df_data_subsets).shape == (6, 3) |
|
289
|
|
|
assert pool_duplicate_subsets( |
|
290
|
|
|
self.df_data_subsets, |
|
291
|
|
|
col_dupl_thresh=1, |
|
292
|
|
|
).shape == (6, 6) |
|
293
|
|
|
|
|
294
|
|
|
assert pool_duplicate_subsets(self.df_data_subsets, subset_thresh=0).shape == ( |
|
295
|
|
|
6, |
|
296
|
|
|
2, |
|
297
|
|
|
) |
|
298
|
|
|
|
|
299
|
|
|
assert pool_duplicate_subsets(self.df_data_subsets, return_details=True)[0].shape == (6, 3) |
|
300
|
|
|
assert pool_duplicate_subsets(self.df_data_subsets, return_details=True)[1] == [ |
|
301
|
|
|
"c1", |
|
302
|
|
|
"c2", |
|
303
|
|
|
"c3", |
|
304
|
|
|
"c5", |
|
305
|
|
|
] |
|
306
|
|
|
|
|
307
|
|
|
assert pool_duplicate_subsets(self.df_data_subsets, exclude=["c1"]).shape == ( |
|
308
|
|
|
6, |
|
309
|
|
|
4, |
|
310
|
|
|
) |
|
311
|
|
|
|
|
312
|
|
|
assert pool_duplicate_subsets( |
|
313
|
|
|
self.df_data_subsets, |
|
314
|
|
|
exclude=["c1"], |
|
315
|
|
|
return_details=True, |
|
316
|
|
|
)[1] == ["c2", "c5", "c6"] |
|
317
|
|
|
|