|
1
|
|
|
"""Utilities and auxiliary functions. |
|
2
|
|
|
|
|
3
|
|
|
:author: Andreas Kanz |
|
4
|
|
|
|
|
5
|
|
|
""" |
|
6
|
|
|
|
|
7
|
|
|
from __future__ import annotations |
|
8
|
|
|
|
|
9
|
|
|
from typing import Literal |
|
10
|
|
|
from typing import TypedDict |
|
11
|
|
|
|
|
12
|
|
|
import numpy as np |
|
13
|
|
|
import pandas as pd |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
|
def _corr_selector( |
|
17
|
|
|
corr: pd.Series | pd.DataFrame, |
|
18
|
|
|
split: Literal["pos", "neg", "high", "low"] | None = None, |
|
19
|
|
|
threshold: float = 0, |
|
20
|
|
|
) -> pd.Series | pd.DataFrame: |
|
21
|
|
|
"""Select the desired correlations using this utility function. |
|
22
|
|
|
|
|
23
|
|
|
Parameters |
|
24
|
|
|
---------- |
|
25
|
|
|
corr : pd.Series | pd.DataFrame |
|
26
|
|
|
pd.Series or pd.DataFrame of correlations |
|
27
|
|
|
split : Optional[str], optional |
|
28
|
|
|
Type of split performed, by default None |
|
29
|
|
|
* {None, "pos", "neg", "high", "low"} |
|
30
|
|
|
threshold : float, optional |
|
31
|
|
|
Value between 0 and 1 to set the correlation threshold, by default 0 unless \ |
|
32
|
|
|
split = "high" or split = "low", in which case default is 0.3 |
|
33
|
|
|
|
|
34
|
|
|
Returns |
|
35
|
|
|
------- |
|
36
|
|
|
pd.DataFrame |
|
37
|
|
|
List or matrix of (filtered) correlations |
|
38
|
|
|
|
|
39
|
|
|
""" |
|
40
|
|
|
if split == "pos": |
|
41
|
|
|
corr = corr.where((corr >= threshold) & (corr > 0)) |
|
42
|
|
|
print( |
|
43
|
|
|
'Displaying positive correlations. Specify a positive "threshold" to ' |
|
44
|
|
|
"limit the results further.", |
|
45
|
|
|
) |
|
46
|
|
|
elif split == "neg": |
|
47
|
|
|
corr = corr.where((corr <= threshold) & (corr < 0)) |
|
48
|
|
|
print( |
|
49
|
|
|
'Displaying negative correlations. Specify a negative "threshold" to ' |
|
50
|
|
|
"limit the results further.", |
|
51
|
|
|
) |
|
52
|
|
|
elif split == "high": |
|
53
|
|
|
threshold = 0.3 if threshold <= 0 else threshold |
|
54
|
|
|
corr = corr.where(np.abs(corr) >= threshold) |
|
55
|
|
|
print( |
|
56
|
|
|
f"Displaying absolute correlations above the threshold ({threshold}). " |
|
57
|
|
|
'Specify a positive "threshold" to limit the results further.', |
|
58
|
|
|
) |
|
59
|
|
|
elif split == "low": |
|
60
|
|
|
threshold = 0.3 if threshold <= 0 else threshold |
|
61
|
|
|
corr = corr.where(np.abs(corr) <= threshold) |
|
62
|
|
|
print( |
|
63
|
|
|
f"Displaying absolute correlations below the threshold ({threshold}). " |
|
64
|
|
|
'Specify a positive "threshold" to limit the results further.', |
|
65
|
|
|
) |
|
66
|
|
|
|
|
67
|
|
|
return corr |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
def _diff_report( |
|
71
|
|
|
data: pd.DataFrame, |
|
72
|
|
|
data_cleaned: pd.DataFrame, |
|
73
|
|
|
dupl_rows: list[str | int] | None = None, |
|
74
|
|
|
single_val_cols: list[str] | None = None, |
|
75
|
|
|
show: Literal["all", "changes"] | None = "changes", |
|
76
|
|
|
) -> None: |
|
77
|
|
|
"""Provide information about changes between two datasets. |
|
78
|
|
|
|
|
79
|
|
|
This includes dropped rows and columns, memory usage and missing values. |
|
80
|
|
|
|
|
81
|
|
|
Parameters |
|
82
|
|
|
---------- |
|
83
|
|
|
data : pd.DataFrame |
|
84
|
|
|
2D dataset that can be coerced into Pandas DataFrame. Input the initial \ |
|
85
|
|
|
dataset here |
|
86
|
|
|
data_cleaned : pd.DataFrame |
|
87
|
|
|
2D dataset that can be coerced into Pandas DataFrame. Input the cleaned / \ |
|
88
|
|
|
updated dataset here |
|
89
|
|
|
dupl_rows : Optional[list[str | int]], optional |
|
90
|
|
|
List of duplicate row indices, by default None |
|
91
|
|
|
single_val_cols : Optional[List[str]], optional |
|
92
|
|
|
List of single-valued column indices. I.e. columns where all cells contain \ |
|
93
|
|
|
the same value. NaNs count as a separate value, by default None |
|
94
|
|
|
show : str, optional |
|
95
|
|
|
{"all", "changes", None}, by default "changes" |
|
96
|
|
|
Specify verbosity of the output: |
|
97
|
|
|
* "all": Print information about the data before and after cleaning as \ |
|
98
|
|
|
well as information about changes and memory usage (deep). Please be \ |
|
99
|
|
|
aware, that this can slow down the function by quite a bit. |
|
100
|
|
|
* "changes": Print out differences in the data before and after cleaning. |
|
101
|
|
|
* None: No information about the data and the data cleaning is printed. |
|
102
|
|
|
|
|
103
|
|
|
Returns |
|
104
|
|
|
------- |
|
105
|
|
|
None |
|
106
|
|
|
Print statement highlighting the datasets or changes between the two datasets. |
|
107
|
|
|
|
|
108
|
|
|
""" |
|
109
|
|
|
if show not in ["changes", "all"]: |
|
110
|
|
|
return |
|
111
|
|
|
|
|
112
|
|
|
dupl_rows = [] if dupl_rows is None else dupl_rows.copy() |
|
113
|
|
|
single_val_cols = [] if single_val_cols is None else single_val_cols.copy() |
|
114
|
|
|
data_mem = _memory_usage(data, deep=False) |
|
115
|
|
|
data_cl_mem = _memory_usage(data_cleaned, deep=False) |
|
116
|
|
|
data_mv_tot = _missing_vals(data)["mv_total"] |
|
117
|
|
|
data_cl_mv_tot = _missing_vals(data_cleaned)["mv_total"] |
|
118
|
|
|
|
|
119
|
|
|
if show == "all": |
|
120
|
|
|
data_mem = _memory_usage(data, deep=True) |
|
121
|
|
|
data_cl_mem = _memory_usage(data_cleaned, deep=True) |
|
122
|
|
|
_print_cleaning_details("Before data cleaning:\n", data, data_mv_tot, data_mem) |
|
123
|
|
|
_print_cleaning_details( |
|
124
|
|
|
"After data cleaning:\n", |
|
125
|
|
|
data_cleaned, |
|
126
|
|
|
data_cl_mv_tot, |
|
127
|
|
|
data_cl_mem, |
|
128
|
|
|
) |
|
129
|
|
|
|
|
130
|
|
|
print( |
|
131
|
|
|
f"Shape of cleaned data: {data_cleaned.shape} - Remaining NAs: {data_cl_mv_tot}\n\n", |
|
132
|
|
|
) |
|
133
|
|
|
print(f"Dropped rows: {data.shape[0]-data_cleaned.shape[0]}") |
|
134
|
|
|
print( |
|
135
|
|
|
f" of which {len(dupl_rows)} duplicates. (Rows (first 150 shown): {dupl_rows[:150]})\n", |
|
136
|
|
|
) |
|
137
|
|
|
print(f"Dropped columns: {data.shape[1]-data_cleaned.shape[1]}") |
|
138
|
|
|
print( |
|
139
|
|
|
f" of which {len(single_val_cols)} single valued. Columns: {single_val_cols}", |
|
140
|
|
|
) |
|
141
|
|
|
print(f"Dropped missing values: {data_mv_tot-data_cl_mv_tot}") |
|
142
|
|
|
mem_change = data_mem - data_cl_mem |
|
143
|
|
|
mem_perc = round(100 * mem_change / data_mem, 2) |
|
144
|
|
|
print(f"Reduced memory by at least: {round(mem_change,3)} MB (-{mem_perc}%)\n") |
|
145
|
|
|
|
|
146
|
|
|
|
|
147
|
|
|
def _print_cleaning_details( |
|
148
|
|
|
header: str, |
|
149
|
|
|
data: pd.DataFrame | pd.Series, |
|
150
|
|
|
missing_vals: int, |
|
151
|
|
|
mem_usage: float, |
|
152
|
|
|
) -> None: |
|
153
|
|
|
print(header) |
|
154
|
|
|
print(f"dtypes:\n{data.dtypes.value_counts()}") |
|
155
|
|
|
print(f"\nNumber of rows: {str(data.shape[0]).rjust(8)}") |
|
156
|
|
|
print(f"Number of cols: {str(data.shape[1]).rjust(8)}") |
|
157
|
|
|
print(f"Missing values: {str(missing_vals).rjust(8)}") |
|
158
|
|
|
print(f"Memory usage: {str(mem_usage).rjust(7)} MB") |
|
159
|
|
|
print("_______________________________________________________\n") |
|
160
|
|
|
|
|
161
|
|
|
|
|
162
|
|
|
def _drop_duplicates(data: pd.DataFrame) -> tuple[pd.DataFrame, list[str | int]]: |
|
163
|
|
|
"""Provide information on and drops duplicate rows. |
|
164
|
|
|
|
|
165
|
|
|
Parameters |
|
166
|
|
|
---------- |
|
167
|
|
|
data : pd.DataFrame |
|
168
|
|
|
2D dataset that can be coerced into Pandas DataFrame |
|
169
|
|
|
|
|
170
|
|
|
Returns |
|
171
|
|
|
------- |
|
172
|
|
|
Tuple[pd.DataFrame, List] |
|
173
|
|
|
Deduplicated Pandas DataFrame and Index Object of rows dropped |
|
174
|
|
|
|
|
175
|
|
|
""" |
|
176
|
|
|
data = pd.DataFrame(data).copy() |
|
177
|
|
|
dupl_rows = data[data.duplicated()].index.tolist() |
|
178
|
|
|
data = data.drop(dupl_rows, axis="index").reset_index(drop=True) |
|
179
|
|
|
|
|
180
|
|
|
return data, dupl_rows |
|
181
|
|
|
|
|
182
|
|
|
|
|
183
|
|
|
def _memory_usage(data: pd.DataFrame, deep: bool = True) -> float: |
|
184
|
|
|
"""Give the total memory usage in megabytes. |
|
185
|
|
|
|
|
186
|
|
|
Parameters |
|
187
|
|
|
---------- |
|
188
|
|
|
data : pd.DataFrame |
|
189
|
|
|
2D dataset that can be coerced into Pandas DataFrame |
|
190
|
|
|
deep : bool, optional |
|
191
|
|
|
Runs a deep analysis of the memory usage, by default True |
|
192
|
|
|
|
|
193
|
|
|
Returns |
|
194
|
|
|
------- |
|
195
|
|
|
float |
|
196
|
|
|
Memory usage in megabytes |
|
197
|
|
|
|
|
198
|
|
|
""" |
|
199
|
|
|
return round(data.memory_usage(index=True, deep=deep).sum() / (1024**2), 2) |
|
200
|
|
|
|
|
201
|
|
|
|
|
202
|
|
|
class MVResult(TypedDict): |
|
203
|
|
|
"""TypedDict for the return value of _missing_vals.""" |
|
204
|
|
|
|
|
205
|
|
|
mv_total: int |
|
206
|
|
|
mv_rows: int |
|
207
|
|
|
mv_cols: int |
|
208
|
|
|
mv_rows_ratio: float |
|
209
|
|
|
mv_cols_ratio: float |
|
210
|
|
|
|
|
211
|
|
|
|
|
212
|
|
|
def _missing_vals(data: pd.DataFrame) -> MVResult: |
|
213
|
|
|
"""Give metrics of missing values in the dataset. |
|
214
|
|
|
|
|
215
|
|
|
Parameters |
|
216
|
|
|
---------- |
|
217
|
|
|
data : pd.DataFrame |
|
218
|
|
|
2D dataset that can be coerced into Pandas DataFrame |
|
219
|
|
|
|
|
220
|
|
|
Returns |
|
221
|
|
|
------- |
|
222
|
|
|
Dict[str, float] |
|
223
|
|
|
mv_total: float, number of missing values in the entire dataset |
|
224
|
|
|
mv_rows: float, number of missing values in each row |
|
225
|
|
|
mv_cols: float, number of missing values in each column |
|
226
|
|
|
mv_rows_ratio: float, ratio of missing values for each row |
|
227
|
|
|
mv_cols_ratio: float, ratio of missing values for each column |
|
228
|
|
|
|
|
229
|
|
|
""" |
|
230
|
|
|
data = pd.DataFrame(data).copy() |
|
231
|
|
|
mv_total: int = data.isna().sum().sum() |
|
232
|
|
|
mv_rows: int = data.isna().sum(axis=1) |
|
233
|
|
|
mv_cols: int = data.isna().sum(axis=0) |
|
234
|
|
|
mv_rows_ratio: float = mv_rows / data.shape[1] |
|
235
|
|
|
mv_cols_ratio: float = mv_cols / data.shape[0] |
|
236
|
|
|
|
|
237
|
|
|
return { |
|
238
|
|
|
"mv_total": mv_total, |
|
239
|
|
|
"mv_rows": mv_rows, |
|
240
|
|
|
"mv_cols": mv_cols, |
|
241
|
|
|
"mv_rows_ratio": mv_rows_ratio, |
|
242
|
|
|
"mv_cols_ratio": mv_cols_ratio, |
|
243
|
|
|
} |
|
244
|
|
|
|
|
245
|
|
|
|
|
246
|
|
|
def _validate_input_bool(value: bool, desc: str) -> None: |
|
247
|
|
|
if not isinstance(value, bool): |
|
248
|
|
|
msg = f"Input value for '{desc}' is {type(value)} but should be a boolean." |
|
249
|
|
|
raise TypeError(msg) |
|
250
|
|
|
|
|
251
|
|
|
|
|
252
|
|
|
def _validate_input_int(value: int, desc: str) -> None: |
|
253
|
|
|
if not isinstance(value, int): |
|
254
|
|
|
msg = f"Input value for '{desc}' is {type(value)} but should be an integer." |
|
255
|
|
|
raise TypeError(msg) |
|
256
|
|
|
|
|
257
|
|
|
|
|
258
|
|
|
def _validate_input_range(value: float, desc: str, lower: float, upper: float) -> None: |
|
259
|
|
|
if value < lower or value > upper: |
|
260
|
|
|
msg = f"'{desc}' = {value} but should be {lower} <= '{desc}' <= {upper}." |
|
261
|
|
|
raise ValueError(msg) |
|
262
|
|
|
|
|
263
|
|
|
|
|
264
|
|
|
def _validate_input_smaller(value1: int, value2: int, desc: str) -> None: |
|
265
|
|
|
if value1 > value2: |
|
266
|
|
|
msg = f"The first input for '{desc}' should be smaller or equal to the second." |
|
267
|
|
|
raise ValueError(msg) |
|
268
|
|
|
|
|
269
|
|
|
|
|
270
|
|
|
def _validate_input_sum_smaller(limit: float, desc: str, *args) -> None: # noqa: ANN002 |
|
271
|
|
|
if sum(args) > limit: |
|
272
|
|
|
msg = f"The sum of input values for '{desc}' should be less or equal to {limit}." |
|
273
|
|
|
raise ValueError(msg) |
|
274
|
|
|
|
|
275
|
|
|
|
|
276
|
|
|
def _validate_input_sum_larger(limit: float, desc: str, *args) -> None: # noqa: ANN002 |
|
277
|
|
|
if sum(args) < limit: |
|
278
|
|
|
msg = f"The sum of input values for '{desc}' should be larger/equal to {limit}." |
|
279
|
|
|
raise ValueError(msg) |
|
280
|
|
|
|
|
281
|
|
|
|
|
282
|
|
|
def _validate_input_num_data(value: pd.DataFrame, desc: str) -> None: |
|
283
|
|
|
if value.select_dtypes(include=["number"]).empty: |
|
284
|
|
|
msg = f"Input value for '{desc}' should contain at least one numerical column." |
|
285
|
|
|
raise TypeError(msg) |
|
286
|
|
|
|