1 | /* The MIT License |
||
2 | |||
3 | Copyright (c) 2011 by Michael Zinsmaier and nergal.dev |
||
4 | Copyright (c) 2012 by Thomas Ritou |
||
5 | |||
6 | Permission is hereby granted, free of charge, to any person obtaining a copy |
||
7 | of this software and associated documentation files (the "Software"), to deal |
||
8 | in the Software without restriction, including without limitation the rights |
||
9 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||
10 | copies of the Software, and to permit persons to whom the Software is |
||
11 | furnished to do so, subject to the following conditions: |
||
12 | |||
13 | The above copyright notice and this permission notice shall be included in |
||
14 | all copies or substantial portions of the Software. |
||
15 | |||
16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||
17 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||
18 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||
19 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||
20 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||
21 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||
22 | THE SOFTWARE. |
||
23 | */ |
||
24 | |||
25 | /* |
||
26 | ____________________________________________________ |
||
27 | |||
28 | what it is: |
||
29 | ____________________________________________________ |
||
30 | |||
31 | curvedLines is a plugin for flot, that tries to display lines in a smoother way. |
||
32 | This is achieved through adding of more data points. The plugin is a data processor and can thus be used |
||
33 | in combination with standard line / point rendering options. |
||
34 | |||
35 | => 1) with large data sets you may get trouble |
||
36 | => 2) if you want to display the points too, you have to plot them as 2nd data series over the lines |
||
37 | => 3) consecutive x data points are not allowed to have the same value |
||
38 | |||
39 | Feel free to further improve the code |
||
40 | |||
41 | ____________________________________________________ |
||
42 | |||
43 | how to use it: |
||
44 | ____________________________________________________ |
||
45 | |||
46 | var d1 = [[5,5],[7,3],[9,12]]; |
||
47 | |||
48 | var options = { series: { curvedLines: { Aktif: true }}}; |
||
49 | |||
50 | $.plot($("#placeholder"), [{data: d1, lines: { show: true}, curvedLines: {apply: true}}], options); |
||
51 | |||
52 | _____________________________________________________ |
||
53 | |||
54 | options: |
||
55 | _____________________________________________________ |
||
56 | |||
57 | Aktif: bool true => plugin can be used |
||
58 | apply: bool true => series will be drawn as curved line |
||
59 | monotonicFit: bool true => uses monotone cubic interpolation (preserve monotonicity) |
||
60 | tension: int defines the tension parameter of the hermite spline interpolation (no effect if monotonicFit is set) |
||
61 | nrSplinePoints: int defines the number of sample points (of the spline) in between two consecutive points |
||
62 | |||
63 | deprecated options from flot prior to 1.0.0: |
||
64 | ------------------------------------------------ |
||
65 | legacyOverride bool true => use old default |
||
66 | OR |
||
67 | legacyOverride optionArray |
||
68 | { |
||
69 | fit: bool true => forces the max,mins of the curve to be on the datapoints |
||
70 | curvePointFactor int defines how many "virtual" points are used per "real" data point to |
||
71 | emulate the curvedLines (points total = real points * curvePointFactor) |
||
72 | fitPointDist: int defines the x axis distance of the additional two points that are used |
||
73 | } to enforce the min max condition. |
||
74 | */ |
||
75 | |||
76 | /* |
||
77 | * v0.1 initial commit |
||
78 | * v0.15 negative values should work now (outcommented a negative -> 0 hook hope it does no harm) |
||
79 | * v0.2 added fill option (thanks to monemihir) and multi axis support (thanks to soewono effendi) |
||
80 | * v0.3 improved saddle handling and added basic handling of Dates |
||
81 | * v0.4 rewritten fill option (thomas ritou) mostly from original flot code (now fill between points rather than to graph bottom), corrected fill Opacity bug |
||
82 | * v0.5 rewritten instead of implementing a own draw function CurvedLines is now based on the processDatapoints flot hook (credits go to thomas ritou). |
||
83 | * This change breakes existing code however CurvedLines are now just many tiny straight lines to flot and therefore all flot lines options (like gradient fill, |
||
84 | * shadow) are now supported out of the box |
||
85 | * v0.6 flot 0.8 compatibility and some bug fixes |
||
86 | * v0.6.x changed versioning schema |
||
87 | * |
||
88 | * v1.0.0 API Break marked existing implementation/options as deprecated |
||
89 | * v1.1.0 added the new curved line calculations based on hermite splines |
||
90 | * v1.1.1 added a rough parameter check to make sure the new options are used |
||
91 | */ |
||
92 | |||
93 | (function($) { |
||
94 | |||
95 | var options = { |
||
96 | series : { |
||
97 | curvedLines : { |
||
98 | Aktif : false, |
||
99 | apply : false, |
||
100 | monotonicFit : false, |
||
101 | tension : 0.5, |
||
102 | nrSplinePoints : 20, |
||
103 | legacyOverride : undefined |
||
104 | } |
||
105 | } |
||
106 | }; |
||
107 | |||
108 | function init(plot) { |
||
109 | |||
110 | plot.hooks.processOptions.push(processOptions); |
||
111 | |||
112 | //if the plugin is Aktif register processDatapoints method |
||
113 | function processOptions(plot, options) { |
||
114 | if (options.series.curvedLines.Aktif) { |
||
115 | plot.hooks.processDatapoints.unshift(processDatapoints); |
||
116 | } |
||
117 | } |
||
118 | |||
119 | //only if the plugin is Aktif |
||
120 | function processDatapoints(plot, series, datapoints) { |
||
121 | var nrPoints = datapoints.points.length / datapoints.pointsize; |
||
122 | var EPSILON = 0.005; |
||
123 | |||
124 | //detects missplaced legacy parameters (prior v1.x.x) in the options object |
||
125 | //this can happen if somebody upgrades to v1.x.x without adjusting the parameters or uses old examples |
||
126 | var invalidLegacyOptions = hasInvalidParameters(series.curvedLines); |
||
127 | |||
128 | if (!invalidLegacyOptions && series.curvedLines.apply == true && series.originSeries === undefined && nrPoints > (1 + EPSILON)) { |
||
129 | if (series.lines.fill) { |
||
130 | |||
131 | var pointsTop = calculateCurvePoints(datapoints, series.curvedLines, 1); |
||
132 | var pointsBottom = calculateCurvePoints(datapoints, series.curvedLines, 2); |
||
133 | //flot makes sure for us that we've got a second y point if fill is true ! |
||
134 | |||
135 | //Merge top and bottom curve |
||
136 | datapoints.pointsize = 3; |
||
137 | datapoints.points = []; |
||
138 | var j = 0; |
||
139 | var k = 0; |
||
140 | var i = 0; |
||
141 | var ps = 2; |
||
142 | while (i < pointsTop.length || j < pointsBottom.length) { |
||
143 | if (pointsTop[i] == pointsBottom[j]) { |
||
144 | datapoints.points[k] = pointsTop[i]; |
||
145 | datapoints.points[k + 1] = pointsTop[i + 1]; |
||
146 | datapoints.points[k + 2] = pointsBottom[j + 1]; |
||
147 | j += ps; |
||
148 | i += ps; |
||
149 | |||
150 | } else if (pointsTop[i] < pointsBottom[j]) { |
||
151 | datapoints.points[k] = pointsTop[i]; |
||
152 | datapoints.points[k + 1] = pointsTop[i + 1]; |
||
153 | datapoints.points[k + 2] = k > 0 ? datapoints.points[k - 1] : null; |
||
154 | i += ps; |
||
155 | } else { |
||
156 | datapoints.points[k] = pointsBottom[j]; |
||
157 | datapoints.points[k + 1] = k > 1 ? datapoints.points[k - 2] : null; |
||
158 | datapoints.points[k + 2] = pointsBottom[j + 1]; |
||
159 | j += ps; |
||
160 | } |
||
161 | k += 3; |
||
162 | } |
||
163 | } else if (series.lines.lineWidth > 0) { |
||
164 | datapoints.points = calculateCurvePoints(datapoints, series.curvedLines, 1); |
||
165 | datapoints.pointsize = 2; |
||
166 | } |
||
167 | } |
||
168 | } |
||
169 | |||
170 | function calculateCurvePoints(datapoints, curvedLinesOptions, yPos) { |
||
171 | if ( typeof curvedLinesOptions.legacyOverride != 'undefined' && curvedLinesOptions.legacyOverride != false) { |
||
172 | var defaultOptions = { |
||
173 | fit : false, |
||
174 | curvePointFactor : 20, |
||
175 | fitPointDist : undefined |
||
176 | }; |
||
177 | var legacyOptions = jQuery.extend(defaultOptions, curvedLinesOptions.legacyOverride); |
||
178 | return calculateLegacyCurvePoints(datapoints, legacyOptions, yPos); |
||
179 | } |
||
180 | |||
181 | return calculateSplineCurvePoints(datapoints, curvedLinesOptions, yPos); |
||
182 | } |
||
183 | |||
184 | function calculateSplineCurvePoints(datapoints, curvedLinesOptions, yPos) { |
||
185 | var points = datapoints.points; |
||
186 | var ps = datapoints.pointsize; |
||
187 | |||
188 | //create interpolant fuction |
||
189 | var splines = createHermiteSplines(datapoints, curvedLinesOptions, yPos); |
||
190 | var result = []; |
||
191 | |||
192 | //sample the function |
||
193 | // (the result is intependent from the input data => |
||
194 | // it is ok to alter the input after this method) |
||
195 | var j = 0; |
||
196 | for (var i = 0; i < points.length - ps; i += ps) { |
||
197 | var curX = i; |
||
198 | var curY = i + yPos; |
||
199 | |||
200 | var xStart = points[curX]; |
||
201 | var xEnd = points[curX + ps]; |
||
202 | var xStep = (xEnd - xStart) / Number(curvedLinesOptions.nrSplinePoints); |
||
203 | |||
204 | //add point |
||
205 | result.push(points[curX]); |
||
206 | result.push(points[curY]); |
||
207 | |||
208 | //add curve point |
||
209 | for (var x = (xStart += xStep); x < xEnd; x += xStep) { |
||
0 ignored issues
–
show
Unused Code
introduced
by
![]() |
|||
210 | result.push(x); |
||
211 | result.push(splines[j](x)); |
||
212 | } |
||
213 | |||
214 | j++; |
||
215 | } |
||
216 | |||
217 | //add last point |
||
218 | result.push(points[points.length - ps]); |
||
219 | result.push(points[points.length - ps + yPos]); |
||
220 | |||
221 | return result; |
||
222 | } |
||
223 | |||
224 | |||
225 | |||
226 | // Creates an array of splines, one for each segment of the original curve. Algorithm based on the wikipedia articles: |
||
227 | // |
||
228 | // http://de.wikipedia.org/w/index.php?title=Kubisch_Hermitescher_Spline&oldid=130168003 and |
||
229 | // http://en.wikipedia.org/w/index.php?title=Monotone_cubic_interpolation&oldid=622341725 and the description of Fritsch-Carlson from |
||
230 | // http://math.stackexchange.com/questions/45218/implementation-of-monotone-cubic-interpolation |
||
231 | // for a detailed description see https://github.com/MichaelZinsmaier/CurvedLines/docu |
||
232 | function createHermiteSplines(datapoints, curvedLinesOptions, yPos) { |
||
233 | var points = datapoints.points; |
||
234 | var ps = datapoints.pointsize; |
||
235 | |||
236 | // preparation get length (x_{k+1} - x_k) and slope s=(p_{k+1} - p_k) / (x_{k+1} - x_k) of the segments |
||
237 | var segmentLengths = []; |
||
238 | var segmentSlopes = []; |
||
239 | |||
240 | for (var i = 0; i < points.length - ps; i += ps) { |
||
241 | var curX = i; |
||
242 | var curY = i + yPos; |
||
243 | var dx = points[curX + ps] - points[curX]; |
||
244 | var dy = points[curY + ps] - points[curY]; |
||
245 | |||
246 | segmentLengths.push(dx); |
||
247 | segmentSlopes.push(dy / dx); |
||
248 | } |
||
249 | |||
250 | //get the values for the desired gradients m_k for all points k |
||
251 | //depending on the used method the formula is different |
||
252 | var gradients = [segmentSlopes[0]]; |
||
253 | if (curvedLinesOptions.monotonicFit) { |
||
254 | // Fritsch Carlson |
||
255 | for (var i = 1; i < segmentLengths.length; i++) { |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
i already seems to be declared on line 240 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
256 | var slope = segmentSlopes[i]; |
||
257 | var prev_slope = segmentSlopes[i - 1]; |
||
258 | if (slope * prev_slope <= 0) { // sign(prev_slope) != sign(slpe) |
||
259 | gradients.push(0); |
||
260 | } else { |
||
261 | var length = segmentLengths[i]; |
||
262 | var prev_length = segmentLengths[i - 1]; |
||
263 | var common = length + prev_length; |
||
264 | //m = 3 (prev_length + length) / ((2 length + prev_length) / prev_slope + (length + 2 prev_length) / slope) |
||
265 | gradients.push(3 * common / ((common + length) / prev_slope + (common + prev_length) / slope)); |
||
266 | } |
||
267 | } |
||
268 | } else { |
||
269 | // Cardinal spline with t € [0,1] |
||
270 | // Catmull-Rom for t = 0 |
||
271 | for (var i = ps; i < points.length - ps; i += ps) { |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
i already seems to be declared on line 240 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
272 | var curX = i; |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
curX already seems to be declared on line 241 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
273 | var curY = i + yPos; |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
curY already seems to be declared on line 242 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
274 | gradients.push(Number(curvedLinesOptions.tension) * (points[curY + ps] - points[curY - ps]) / (points[curX + ps] - points[curX - ps])); |
||
275 | } |
||
276 | } |
||
277 | gradients.push(segmentSlopes[segmentSlopes.length - 1]); |
||
278 | |||
279 | //get the two major coefficients (c'_{oef1} and c'_{oef2}) for each segment spline |
||
280 | var coefs1 = []; |
||
281 | var coefs2 = []; |
||
282 | for (i = 0; i < segmentLengths.length; i++) { |
||
283 | var m_k = gradients[i]; |
||
284 | var m_k_plus = gradients[i + 1]; |
||
285 | var slope = segmentSlopes[i]; |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
slope already seems to be declared on line 256 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
286 | var invLength = 1 / segmentLengths[i]; |
||
287 | var common = m_k + m_k_plus - slope - slope; |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
common already seems to be declared on line 263 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
288 | |||
289 | coefs1.push(common * invLength * invLength); |
||
290 | coefs2.push((slope - common - m_k) * invLength); |
||
291 | } |
||
292 | |||
293 | //create functions with from the coefficients and capture the parameters |
||
294 | var ret = []; |
||
295 | for (var i = 0; i < segmentLengths.length; i ++) { |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
i already seems to be declared on line 240 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
296 | var spline = function (x_k, coef1, coef2, coef3, coef4) { |
||
297 | // spline for a segment |
||
298 | return function (x) { |
||
299 | var diff = x - x_k; |
||
300 | var diffSq = diff * diff; |
||
301 | return coef1 * diff * diffSq + coef2 * diffSq + coef3 * diff + coef4; |
||
302 | }; |
||
303 | }; |
||
304 | |||
305 | ret.push(spline(points[i * ps], coefs1[i], coefs2[i], gradients[i], points[i * ps + yPos])); |
||
306 | } |
||
307 | |||
308 | return ret; |
||
309 | }; |
||
310 | |||
311 | //no real idea whats going on here code mainly from https://code.google.com/p/flot/issues/detail?id=226 |
||
312 | //if fit option is selected additional datapoints get inserted before the curve calculations in nergal.dev s code. |
||
313 | function calculateLegacyCurvePoints(datapoints, curvedLinesOptions, yPos) { |
||
314 | |||
315 | var points = datapoints.points; |
||
316 | var ps = datapoints.pointsize; |
||
317 | var num = Number(curvedLinesOptions.curvePointFactor) * (points.length / ps); |
||
318 | |||
319 | var xdata = new Array; |
||
0 ignored issues
–
show
|
|||
320 | var ydata = new Array; |
||
0 ignored issues
–
show
|
|||
321 | |||
322 | var curX = -1; |
||
0 ignored issues
–
show
|
|||
323 | var curY = -1; |
||
0 ignored issues
–
show
|
|||
324 | var j = 0; |
||
325 | |||
326 | if (curvedLinesOptions.fit) { |
||
327 | //insert a point before and after the "real" data point to force the line |
||
328 | //to have a max,min at the data point. |
||
329 | |||
330 | var fpDist; |
||
331 | if ( typeof curvedLinesOptions.fitPointDist == 'undefined') { |
||
332 | //estimate it |
||
333 | var minX = points[0]; |
||
334 | var maxX = points[points.length - ps]; |
||
335 | fpDist = (maxX - minX) / (500 * 100); |
||
336 | //x range / (estimated pixel length of placeholder * factor) |
||
337 | } else { |
||
338 | //use user defined value |
||
339 | fpDist = Number(curvedLinesOptions.fitPointDist); |
||
340 | } |
||
341 | |||
342 | for (var i = 0; i < points.length; i += ps) { |
||
343 | |||
344 | var frontX; |
||
345 | var backX; |
||
346 | curX = i; |
||
347 | curY = i + yPos; |
||
348 | |||
349 | //add point X s |
||
350 | frontX = points[curX] - fpDist; |
||
351 | backX = points[curX] + fpDist; |
||
352 | |||
353 | var factor = 2; |
||
354 | while (frontX == points[curX] || backX == points[curX]) { |
||
355 | //inside the ulp |
||
356 | frontX = points[curX] - (fpDist * factor); |
||
357 | backX = points[curX] + (fpDist * factor); |
||
358 | factor++; |
||
359 | } |
||
360 | |||
361 | //add curve points |
||
362 | xdata[j] = frontX; |
||
363 | ydata[j] = points[curY]; |
||
364 | j++; |
||
365 | |||
366 | xdata[j] = points[curX]; |
||
367 | ydata[j] = points[curY]; |
||
368 | j++; |
||
369 | |||
370 | xdata[j] = backX; |
||
371 | ydata[j] = points[curY]; |
||
372 | j++; |
||
373 | } |
||
374 | } else { |
||
375 | //just use the datapoints |
||
376 | for (var i = 0; i < points.length; i += ps) { |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
i already seems to be declared on line 342 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
377 | curX = i; |
||
378 | curY = i + yPos; |
||
379 | |||
380 | xdata[j] = points[curX]; |
||
381 | ydata[j] = points[curY]; |
||
382 | j++; |
||
383 | } |
||
384 | } |
||
385 | |||
386 | var n = xdata.length; |
||
387 | |||
388 | var y2 = new Array(); |
||
0 ignored issues
–
show
|
|||
389 | var delta = new Array(); |
||
0 ignored issues
–
show
|
|||
390 | y2[0] = 0; |
||
391 | y2[n - 1] = 0; |
||
392 | delta[0] = 0; |
||
393 | |||
394 | for (var i = 1; i < n - 1; ++i) { |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
i already seems to be declared on line 342 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
395 | var d = (xdata[i + 1] - xdata[i - 1]); |
||
396 | if (d == 0) { |
||
397 | //point before current point and after current point need some space in between |
||
398 | return []; |
||
399 | } |
||
400 | |||
401 | var s = (xdata[i] - xdata[i - 1]) / d; |
||
402 | var p = s * y2[i - 1] + 2; |
||
403 | y2[i] = (s - 1) / p; |
||
404 | delta[i] = (ydata[i + 1] - ydata[i]) / (xdata[i + 1] - xdata[i]) - (ydata[i] - ydata[i - 1]) / (xdata[i] - xdata[i - 1]); |
||
405 | delta[i] = (6 * delta[i] / (xdata[i + 1] - xdata[i - 1]) - s * delta[i - 1]) / p; |
||
406 | } |
||
407 | |||
408 | for (var j = n - 2; j >= 0; --j) { |
||
0 ignored issues
–
show
Comprehensibility
Naming
Best Practice
introduced
by
The variable
j already seems to be declared on line 324 . Consider using another variable name or omitting the var keyword.
This check looks for variables that are declared in multiple lines. There may be several reasons for this. In the simplest case the variable name was reused by mistake. This may lead to very hard to locate bugs. If you want to reuse a variable for another purpose, consider declaring it at or near the top of your function and just assigning to it subsequently so it is always declared. ![]() |
|||
409 | y2[j] = y2[j] * y2[j + 1] + delta[j]; |
||
410 | } |
||
411 | |||
412 | // xmax - xmin / #points |
||
413 | var step = (xdata[n - 1] - xdata[0]) / (num - 1); |
||
414 | |||
415 | var xnew = new Array; |
||
0 ignored issues
–
show
|
|||
416 | var ynew = new Array; |
||
0 ignored issues
–
show
|
|||
417 | var result = new Array; |
||
0 ignored issues
–
show
|
|||
418 | |||
419 | xnew[0] = xdata[0]; |
||
420 | ynew[0] = ydata[0]; |
||
421 | |||
422 | result.push(xnew[0]); |
||
423 | result.push(ynew[0]); |
||
424 | |||
425 | for ( j = 1; j < num; ++j) { |
||
426 | //new x point (sampling point for the created curve) |
||
427 | xnew[j] = xnew[0] + j * step; |
||
428 | |||
429 | var max = n - 1; |
||
430 | var min = 0; |
||
431 | |||
432 | while (max - min > 1) { |
||
433 | var k = Math.round((max + min) / 2); |
||
434 | if (xdata[k] > xnew[j]) { |
||
435 | max = k; |
||
436 | } else { |
||
437 | min = k; |
||
438 | } |
||
439 | } |
||
440 | |||
441 | //found point one to the left and one to the right of generated new point |
||
442 | var h = (xdata[max] - xdata[min]); |
||
443 | |||
444 | if (h == 0) { |
||
445 | //similar to above two points from original x data need some space between them |
||
446 | return []; |
||
447 | } |
||
448 | |||
449 | var a = (xdata[max] - xnew[j]) / h; |
||
450 | var b = (xnew[j] - xdata[min]) / h; |
||
451 | |||
452 | ynew[j] = a * ydata[min] + b * ydata[max] + ((a * a * a - a) * y2[min] + (b * b * b - b) * y2[max]) * (h * h) / 6; |
||
453 | |||
454 | result.push(xnew[j]); |
||
455 | result.push(ynew[j]); |
||
456 | } |
||
457 | |||
458 | return result; |
||
459 | } |
||
460 | |||
461 | function hasInvalidParameters(curvedLinesOptions) { |
||
462 | if (typeof curvedLinesOptions.fit != 'undefined' || |
||
463 | typeof curvedLinesOptions.curvePointFactor != 'undefined' || |
||
464 | typeof curvedLinesOptions.fitPointDist != 'undefined') { |
||
465 | throw new Error("CurvedLines detected illegal parameters. The CurvedLines API changed with version 1.0.0 please check the options object."); |
||
466 | return true; |
||
0 ignored issues
–
show
|
|||
467 | } |
||
468 | return false; |
||
469 | } |
||
470 | |||
471 | |||
472 | }//end init |
||
473 | |||
474 | |||
475 | $.plot.plugins.push({ |
||
476 | init : init, |
||
477 | options : options, |
||
478 | name : 'curvedLines', |
||
479 | version : '1.1.1' |
||
480 | }); |
||
481 | |||
482 | })(jQuery); |
||
483 | |||
484 |