1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
from __future__ import division, print_function, absolute_import |
4
|
|
|
|
5
|
|
|
import os |
6
|
|
|
import warnings |
7
|
|
|
import datetime as dt |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
|
11
|
|
|
from . import helpers |
12
|
|
|
|
13
|
|
|
# below try..catch required for autodoc to work on readthedocs |
14
|
|
|
try: |
15
|
|
|
from . import fortranapex as fa |
16
|
|
|
except ImportError as err: |
17
|
|
|
print("ERROR: fortranapex module could not be imported, so apexpy probably" |
18
|
|
|
" won't work. Make sure you have a gfortran compiler. Wheels " |
19
|
|
|
"installation assumes your compiler lives in /opt/local/bin") |
20
|
|
|
raise err |
21
|
|
|
|
22
|
|
|
# make sure invalid warnings are always shown |
23
|
|
|
warnings.filterwarnings('always', message='.*set to -9999 where*', |
24
|
|
|
module='apexpy.apex') |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class ApexHeightError(ValueError): |
28
|
|
|
pass |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
class Apex(object): |
32
|
|
|
"""Performs coordinate conversions, field-line mapping and base vector |
33
|
|
|
calculations. |
34
|
|
|
|
35
|
|
|
Parameters |
36
|
|
|
========== |
37
|
|
|
date : float, :class:`dt.date`, or :class:`dt.datetime`, optional |
38
|
|
|
Determines which IGRF coefficients are used in conversions. Uses |
39
|
|
|
current date as default. If float, use decimal year. |
40
|
|
|
refh : float, optional |
41
|
|
|
Reference height in km for apex coordinates (the field lines are mapped |
42
|
|
|
to this height) |
43
|
|
|
datafile : str, optional |
44
|
|
|
Path to custom coefficient file |
45
|
|
|
|
46
|
|
|
Attributes |
47
|
|
|
========== |
48
|
|
|
year : float |
49
|
|
|
Decimal year used for the IGRF model |
50
|
|
|
refh : float |
51
|
|
|
Reference height in km for apex coordinates |
52
|
|
|
datafile : str |
53
|
|
|
Path to coefficient file |
54
|
|
|
|
55
|
|
|
Notes |
56
|
|
|
===== |
57
|
|
|
The calculations use IGRF-12 with coefficients from 1900 to 2020 [1]_. |
58
|
|
|
|
59
|
|
|
References |
60
|
|
|
========== |
61
|
|
|
|
62
|
|
|
.. [1] Thébault, E. et al. (2015), International Geomagnetic Reference |
63
|
|
|
Field: the 12th generation, Earth, Planets and Space, 67(1), 79, |
64
|
|
|
:doi:`10.1186/s40623-015-0228-9`. |
65
|
|
|
|
66
|
|
|
""" |
67
|
|
|
|
68
|
|
|
def __init__(self, date=None, refh=0, datafile=None, fortranlib=None): |
69
|
|
|
|
70
|
|
|
if datafile is None: |
71
|
|
|
datafile = os.path.join(os.path.dirname(__file__), 'apexsh.dat') |
72
|
|
|
|
73
|
|
|
if fortranlib is None: |
74
|
|
|
fortranlib = fa.__file__ |
75
|
|
|
|
76
|
|
|
self.RE = 6371.009 # mean Earth radius |
77
|
|
|
self.set_refh(refh) # reference height |
78
|
|
|
|
79
|
|
|
if date is None: |
80
|
|
|
self.year = helpers.toYearFraction(dt.datetime.now()) |
81
|
|
|
else: |
82
|
|
|
try: |
83
|
|
|
# convert date/datetime object to decimal year |
84
|
|
|
self.year = helpers.toYearFraction(date) |
85
|
|
|
except AttributeError: |
86
|
|
|
# Failed while finding datetime attribute, so |
87
|
|
|
# date is probably an int or float; use directly |
88
|
|
|
self.year = date |
89
|
|
|
|
90
|
|
|
if not os.path.isfile(datafile): |
91
|
|
|
raise IOError('Datafile does not exist: {}'.format(datafile)) |
92
|
|
|
|
93
|
|
|
if not os.path.isfile(fortranlib): |
94
|
|
|
raise IOError('Datafile does not exist: {}'.format(fortranlib)) |
95
|
|
|
|
96
|
|
|
self.datafile = datafile |
97
|
|
|
self.fortranlib = fortranlib |
98
|
|
|
|
99
|
|
|
self.set_epoch(self.year) |
100
|
|
|
|
101
|
|
|
# vectorize fortran functions |
102
|
|
|
self._geo2qd = np.frompyfunc( |
103
|
|
|
lambda glat, glon, height: fa.apxg2q(glat, (glon + 180) % 360 - 180, |
104
|
|
|
height, 0)[:2], 3, 2) |
105
|
|
|
self._geo2apex = np.frompyfunc( |
106
|
|
|
lambda glat, glon, height: fa.apxg2all(glat, (glon + 180) % 360 - |
107
|
|
|
180, height, self.refh, |
108
|
|
|
0)[2:4], 3, 2) |
109
|
|
|
self._geo2apexall = np.frompyfunc( |
110
|
|
|
lambda glat, glon, height: fa.apxg2all(glat, (glon + 180) % 360 - |
111
|
|
|
180, height, self.refh, |
112
|
|
|
1), 3, 14) |
113
|
|
|
self._qd2geo = np.frompyfunc( |
114
|
|
|
lambda qlat, qlon, height, precision: fa.apxq2g(qlat, (qlon + 180) |
115
|
|
|
% 360 - 180, height, |
116
|
|
|
precision), 4, 3) |
117
|
|
|
self._basevec = np.frompyfunc( |
118
|
|
|
lambda glat, glon, height: fa.apxg2q(glat, (glon + 180) % 360 - 180, |
119
|
|
|
height, 1)[2:4], 3, 2) |
120
|
|
|
|
121
|
|
|
# vectorize other nonvectorized functions |
122
|
|
|
self._apex2qd = np.frompyfunc(self._apex2qd_nonvectorized, 3, 2) |
123
|
|
|
self._qd2apex = np.frompyfunc(self._qd2apex_nonvectorized, 3, 2) |
124
|
|
|
self._get_babs = np.frompyfunc(self._get_babs_nonvectorized, 3, 1) |
125
|
|
|
|
126
|
|
|
def convert(self, lat, lon, source, dest, height=0, datetime=None, |
127
|
|
|
precision=1e-10, ssheight=50 * 6371): |
128
|
|
|
"""Converts between geodetic, modified apex, quasi-dipole and MLT. |
129
|
|
|
|
130
|
|
|
Parameters |
131
|
|
|
========== |
132
|
|
|
lat : array_like |
133
|
|
|
Latitude |
134
|
|
|
lon : array_like |
135
|
|
|
Longitude/MLT |
136
|
|
|
source : {'geo', 'apex', 'qd', 'mlt'} |
137
|
|
|
Input coordinate system |
138
|
|
|
dest : {'geo', 'apex', 'qd', 'mlt'} |
139
|
|
|
Output coordinate system |
140
|
|
|
height : array_like, optional |
141
|
|
|
Altitude in km |
142
|
|
|
datetime : :class:`datetime.datetime` |
143
|
|
|
Date and time for MLT conversions (required for MLT conversions) |
144
|
|
|
precision : float, optional |
145
|
|
|
Precision of output (degrees) when converting to geo. A negative |
146
|
|
|
value of this argument produces a low-precision calculation of |
147
|
|
|
geodetic lat/lon based only on their spherical harmonic |
148
|
|
|
representation. |
149
|
|
|
A positive value causes the underlying Fortran routine to iterate |
150
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
151
|
|
|
the input QD lat/lon to within the specified precision (all |
152
|
|
|
coordinates being converted to geo are converted to QD first and |
153
|
|
|
passed through APXG2Q). |
154
|
|
|
ssheight : float, optional |
155
|
|
|
Altitude in km to use for converting the subsolar point from |
156
|
|
|
geographic to magnetic coordinates. A high altitude is used |
157
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
158
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
159
|
|
|
|
160
|
|
|
Returns |
161
|
|
|
======= |
162
|
|
|
lat : ndarray or float |
163
|
|
|
Converted latitude (if converting to MLT, output latitude is apex) |
164
|
|
|
lat : ndarray or float |
165
|
|
|
Converted longitude/MLT |
166
|
|
|
|
167
|
|
|
""" |
168
|
|
|
|
169
|
|
|
if datetime is None and ('mlt' in [source, dest]): |
170
|
|
|
raise ValueError('datetime must be given for MLT calculations') |
171
|
|
|
|
172
|
|
|
lat = helpers.checklat(lat) |
173
|
|
|
|
174
|
|
|
if source == dest: |
175
|
|
|
return lat, lon |
176
|
|
|
# from geo |
177
|
|
|
elif source == 'geo' and dest == 'apex': |
178
|
|
|
lat, lon = self.geo2apex(lat, lon, height) |
179
|
|
|
elif source == 'geo' and dest == 'qd': |
180
|
|
|
lat, lon = self.geo2qd(lat, lon, height) |
181
|
|
|
elif source == 'geo' and dest == 'mlt': |
182
|
|
|
lat, lon = self.geo2apex(lat, lon, height) |
183
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
184
|
|
|
# from apex |
185
|
|
|
elif source == 'apex' and dest == 'geo': |
186
|
|
|
lat, lon, _ = self.apex2geo(lat, lon, height, precision=precision) |
187
|
|
|
elif source == 'apex' and dest == 'qd': |
188
|
|
|
lat, lon = self.apex2qd(lat, lon, height=height) |
189
|
|
|
elif source == 'apex' and dest == 'mlt': |
190
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
191
|
|
|
# from qd |
192
|
|
|
elif source == 'qd' and dest == 'geo': |
193
|
|
|
lat, lon, _ = self.qd2geo(lat, lon, height, precision=precision) |
194
|
|
|
elif source == 'qd' and dest == 'apex': |
195
|
|
|
lat, lon = self.qd2apex(lat, lon, height=height) |
196
|
|
|
elif source == 'qd' and dest == 'mlt': |
197
|
|
|
lat, lon = self.qd2apex(lat, lon, height=height) |
198
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
199
|
|
|
# from mlt (input latitude assumed apex) |
200
|
|
|
elif source == 'mlt' and dest == 'geo': |
201
|
|
|
lon = self.mlt2mlon(lon, datetime, ssheight=ssheight) |
202
|
|
|
lat, lon, _ = self.apex2geo(lat, lon, height, precision=precision) |
203
|
|
|
elif source == 'mlt' and dest == 'apex': |
204
|
|
|
lon = self.mlt2mlon(lon, datetime, ssheight=ssheight) |
205
|
|
|
elif source == 'mlt' and dest == 'qd': |
206
|
|
|
lon = self.mlt2mlon(lon, datetime, ssheight=ssheight) |
207
|
|
|
lat, lon = self.apex2qd(lat, lon, height=height) |
208
|
|
|
# no other transformations are implemented |
209
|
|
|
else: |
210
|
|
|
estr = 'Unknown coordinate transformation: ' |
211
|
|
|
estr += '{} -> {}'.format(source, dest) |
212
|
|
|
raise NotImplementedError(estr) |
213
|
|
|
|
214
|
|
|
return lat, lon |
215
|
|
|
|
216
|
|
|
def geo2apex(self, glat, glon, height): |
217
|
|
|
"""Converts geodetic to modified apex coordinates. |
218
|
|
|
|
219
|
|
|
Parameters |
220
|
|
|
========== |
221
|
|
|
glat : array_like |
222
|
|
|
Geodetic latitude |
223
|
|
|
glon : array_like |
224
|
|
|
Geodetic longitude |
225
|
|
|
height : array_like |
226
|
|
|
Altitude in km |
227
|
|
|
|
228
|
|
|
Returns |
229
|
|
|
======= |
230
|
|
|
alat : ndarray or float |
231
|
|
|
Modified apex latitude |
232
|
|
|
alon : ndarray or float |
233
|
|
|
Modified apex longitude |
234
|
|
|
|
235
|
|
|
""" |
236
|
|
|
|
237
|
|
|
glat = helpers.checklat(glat, name='glat') |
238
|
|
|
|
239
|
|
|
alat, alon = self._geo2apex(glat, glon, height) |
240
|
|
|
|
241
|
|
|
if np.any(np.float64(alat) == -9999): |
242
|
|
|
warnings.warn('Apex latitude set to -9999 where undefined ' |
243
|
|
|
'(apex height may be < reference height)') |
244
|
|
|
|
245
|
|
|
# if array is returned, dtype is object, so convert to float |
246
|
|
|
return np.float64(alat), np.float64(alon) |
247
|
|
|
|
248
|
|
|
def apex2geo(self, alat, alon, height, precision=1e-10): |
249
|
|
|
"""Converts modified apex to geodetic coordinates. |
250
|
|
|
|
251
|
|
|
Parameters |
252
|
|
|
========== |
253
|
|
|
alat : array_like |
254
|
|
|
Modified apex latitude |
255
|
|
|
alon : array_like |
256
|
|
|
Modified apex longitude |
257
|
|
|
height : array_like |
258
|
|
|
Altitude in km |
259
|
|
|
precision : float, optional |
260
|
|
|
Precision of output (degrees). A negative value of this argument |
261
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
262
|
|
|
on their spherical harmonic representation. A positive value causes |
263
|
|
|
the underlying Fortran routine to iterate until feeding the output |
264
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
265
|
|
|
within the specified precision. |
266
|
|
|
|
267
|
|
|
Returns |
268
|
|
|
======= |
269
|
|
|
glat : ndarray or float |
270
|
|
|
Geodetic latitude |
271
|
|
|
glon : ndarray or float |
272
|
|
|
Geodetic longitude |
273
|
|
|
error : ndarray or float |
274
|
|
|
The angular difference (degrees) between the input QD coordinates |
275
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
276
|
|
|
into geo2qd (APXG2Q) |
277
|
|
|
|
278
|
|
|
""" |
279
|
|
|
|
280
|
|
|
alat = helpers.checklat(alat, name='alat') |
281
|
|
|
|
282
|
|
|
qlat, qlon = self.apex2qd(alat, alon, height=height) |
283
|
|
|
glat, glon, error = self.qd2geo(qlat, qlon, height, precision=precision) |
284
|
|
|
|
285
|
|
|
return glat, glon, error |
286
|
|
|
|
287
|
|
|
def geo2qd(self, glat, glon, height): |
288
|
|
|
"""Converts geodetic to quasi-dipole coordinates. |
289
|
|
|
|
290
|
|
|
Parameters |
291
|
|
|
========== |
292
|
|
|
glat : array_like |
293
|
|
|
Geodetic latitude |
294
|
|
|
glon : array_like |
295
|
|
|
Geodetic longitude |
296
|
|
|
height : array_like |
297
|
|
|
Altitude in km |
298
|
|
|
|
299
|
|
|
Returns |
300
|
|
|
======= |
301
|
|
|
qlat : ndarray or float |
302
|
|
|
Quasi-dipole latitude |
303
|
|
|
qlon : ndarray or float |
304
|
|
|
Quasi-dipole longitude |
305
|
|
|
|
306
|
|
|
""" |
307
|
|
|
|
308
|
|
|
glat = helpers.checklat(glat, name='glat') |
309
|
|
|
|
310
|
|
|
qlat, qlon = self._geo2qd(glat, glon, height) |
311
|
|
|
|
312
|
|
|
# if array is returned, dtype is object, so convert to float |
313
|
|
|
return np.float64(qlat), np.float64(qlon) |
314
|
|
|
|
315
|
|
|
def qd2geo(self, qlat, qlon, height, precision=1e-10): |
316
|
|
|
"""Converts quasi-dipole to geodetic coordinates. |
317
|
|
|
|
318
|
|
|
Parameters |
319
|
|
|
========== |
320
|
|
|
qlat : array_like |
321
|
|
|
Quasi-dipole latitude |
322
|
|
|
qlon : array_like |
323
|
|
|
Quasi-dipole longitude |
324
|
|
|
height : array_like |
325
|
|
|
Altitude in km |
326
|
|
|
precision : float, optional |
327
|
|
|
Precision of output (degrees). A negative value of this argument |
328
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
329
|
|
|
on their spherical harmonic representation. A positive value causes |
330
|
|
|
the underlying Fortran routine to iterate until feeding the output |
331
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
332
|
|
|
within the specified precision. |
333
|
|
|
|
334
|
|
|
Returns |
335
|
|
|
======= |
336
|
|
|
glat : ndarray or float |
337
|
|
|
Geodetic latitude |
338
|
|
|
glon : ndarray or float |
339
|
|
|
Geodetic longitude |
340
|
|
|
error : ndarray or float |
341
|
|
|
The angular difference (degrees) between the input QD coordinates |
342
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
343
|
|
|
into geo2qd (APXG2Q) |
344
|
|
|
|
345
|
|
|
""" |
346
|
|
|
|
347
|
|
|
qlat = helpers.checklat(qlat, name='qlat') |
348
|
|
|
|
349
|
|
|
glat, glon, error = self._qd2geo(qlat, qlon, height, precision) |
350
|
|
|
|
351
|
|
|
# if array is returned, dtype is object, so convert to float |
352
|
|
|
return np.float64(glat), np.float64(glon), np.float64(error) |
353
|
|
|
|
354
|
|
View Code Duplication |
def _apex2qd_nonvectorized(self, alat, alon, height): |
|
|
|
|
355
|
|
|
"""Convert from apex to quasi-dipole (not-vectorised) |
356
|
|
|
|
357
|
|
|
Parameters |
358
|
|
|
----------- |
359
|
|
|
alat : (float) |
360
|
|
|
Apex latitude in degrees |
361
|
|
|
alon : (float) |
362
|
|
|
Apex longitude in degrees |
363
|
|
|
height : (float) |
364
|
|
|
Height in km |
365
|
|
|
|
366
|
|
|
Returns |
367
|
|
|
--------- |
368
|
|
|
qlat : (float) |
369
|
|
|
Quasi-dipole latitude in degrees |
370
|
|
|
qlon : (float) |
371
|
|
|
Quasi-diplole longitude in degrees |
372
|
|
|
""" |
373
|
|
|
|
374
|
|
|
alat = helpers.checklat(alat, name='alat') |
375
|
|
|
|
376
|
|
|
# convert modified apex to quasi-dipole: |
377
|
|
|
qlon = alon |
378
|
|
|
|
379
|
|
|
# apex height |
380
|
|
|
hA = self.get_apex(alat) |
381
|
|
|
|
382
|
|
|
if hA < height: |
383
|
|
|
if np.isclose(hA, height, rtol=0, atol=1e-5): |
384
|
|
|
# allow for values that are close |
385
|
|
|
hA = height |
386
|
|
|
else: |
387
|
|
|
estr = 'height {:.3g} is > apex height '.format(np.max(height)) |
388
|
|
|
estr += '{:.3g} for alat {:.3g}'.format(hA, alat) |
389
|
|
|
raise ApexHeightError(estr) |
390
|
|
|
|
391
|
|
|
qlat = np.sign(alat) * np.degrees(np.arccos(np.sqrt((self.RE + height) / |
392
|
|
|
(self.RE + hA)))) |
393
|
|
|
|
394
|
|
|
return qlat, qlon |
395
|
|
|
|
396
|
|
|
def apex2qd(self, alat, alon, height): |
397
|
|
|
"""Converts modified apex to quasi-dipole coordinates. |
398
|
|
|
|
399
|
|
|
Parameters |
400
|
|
|
========== |
401
|
|
|
alat : array_like |
402
|
|
|
Modified apex latitude |
403
|
|
|
alon : array_like |
404
|
|
|
Modified apex longitude |
405
|
|
|
height : array_like |
406
|
|
|
Altitude in km |
407
|
|
|
|
408
|
|
|
Returns |
409
|
|
|
======= |
410
|
|
|
qlat : ndarray or float |
411
|
|
|
Quasi-dipole latitude |
412
|
|
|
qlon : ndarray or float |
413
|
|
|
Quasi-dipole longitude |
414
|
|
|
|
415
|
|
|
Raises |
416
|
|
|
====== |
417
|
|
|
ApexHeightError |
418
|
|
|
if `height` > apex height |
419
|
|
|
|
420
|
|
|
""" |
421
|
|
|
|
422
|
|
|
qlat, qlon = self._apex2qd(alat, alon, height) |
423
|
|
|
|
424
|
|
|
# if array is returned, the dtype is object, so convert to float |
425
|
|
|
return np.float64(qlat), np.float64(qlon) |
426
|
|
|
|
427
|
|
View Code Duplication |
def _qd2apex_nonvectorized(self, qlat, qlon, height): |
|
|
|
|
428
|
|
|
|
429
|
|
|
qlat = helpers.checklat(qlat, name='qlat') |
430
|
|
|
|
431
|
|
|
alon = qlon |
432
|
|
|
hA = self.get_apex(qlat, height) # apex height |
433
|
|
|
|
434
|
|
|
if hA < self.refh: |
435
|
|
|
if np.isclose(hA, self.refh, rtol=0, atol=1e-5): |
436
|
|
|
# allow for values that are close |
437
|
|
|
hA = self.refh |
438
|
|
|
else: |
439
|
|
|
estr = 'apex height ({:.3g}) is < reference height '.format(hA) |
440
|
|
|
estr += '({:.3g}) for qlat {:.3g}'.format(self.refh, qlat) |
441
|
|
|
raise ApexHeightError(estr) |
442
|
|
|
|
443
|
|
|
alat = np.sign(qlat) * np.degrees(np.arccos(np.sqrt((self.RE + |
444
|
|
|
self.refh) / |
445
|
|
|
(self.RE + hA)))) |
446
|
|
|
|
447
|
|
|
return alat, alon |
448
|
|
|
|
449
|
|
|
def qd2apex(self, qlat, qlon, height): |
450
|
|
|
"""Converts quasi-dipole to modified apex coordinates. |
451
|
|
|
|
452
|
|
|
Parameters |
453
|
|
|
========== |
454
|
|
|
qlat : array_like |
455
|
|
|
Quasi-dipole latitude |
456
|
|
|
qlon : array_like |
457
|
|
|
Quasi-dipole longitude |
458
|
|
|
height : array_like |
459
|
|
|
Altitude in km |
460
|
|
|
|
461
|
|
|
Returns |
462
|
|
|
======= |
463
|
|
|
alat : ndarray or float |
464
|
|
|
Modified apex latitude |
465
|
|
|
alon : ndarray or float |
466
|
|
|
Modified apex longitude |
467
|
|
|
|
468
|
|
|
Raises |
469
|
|
|
====== |
470
|
|
|
ApexHeightError |
471
|
|
|
if apex height < reference height |
472
|
|
|
|
473
|
|
|
""" |
474
|
|
|
|
475
|
|
|
alat, alon = self._qd2apex(qlat, qlon, height) |
476
|
|
|
|
477
|
|
|
# if array is returned, the dtype is object, so convert to float |
478
|
|
|
return np.float64(alat), np.float64(alon) |
479
|
|
|
|
480
|
|
|
def mlon2mlt(self, mlon, datetime, ssheight=50 * 6371): |
481
|
|
|
"""Computes the magnetic local time at the specified magnetic longitude |
482
|
|
|
and UT. |
483
|
|
|
|
484
|
|
|
Parameters |
485
|
|
|
========== |
486
|
|
|
mlon : array_like |
487
|
|
|
Magnetic longitude (apex and quasi-dipole longitude are always |
488
|
|
|
equal) |
489
|
|
|
datetime : :class:`datetime.datetime` |
490
|
|
|
Date and time |
491
|
|
|
ssheight : float, optional |
492
|
|
|
Altitude in km to use for converting the subsolar point from |
493
|
|
|
geographic to magnetic coordinates. A high altitude is used |
494
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
495
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
496
|
|
|
|
497
|
|
|
Returns |
498
|
|
|
======= |
499
|
|
|
mlt : ndarray or float |
500
|
|
|
Magnetic local time [0, 24) |
501
|
|
|
|
502
|
|
|
Notes |
503
|
|
|
===== |
504
|
|
|
To compute the MLT, we find the apex longitude of the subsolar point at |
505
|
|
|
the given time. Then the MLT of the given point will be computed from |
506
|
|
|
the separation in magnetic longitude from this point (1 hour = 15 |
507
|
|
|
degrees). |
508
|
|
|
|
509
|
|
|
""" |
510
|
|
|
ssglat, ssglon = helpers.subsol(datetime) |
511
|
|
|
ssalat, ssalon = self.geo2apex(ssglat, ssglon, ssheight) |
512
|
|
|
|
513
|
|
|
# np.float64 will ensure lists are converted to arrays |
514
|
|
|
return (180 + np.float64(mlon) - ssalon) / 15 % 24 |
515
|
|
|
|
516
|
|
|
def mlt2mlon(self, mlt, datetime, ssheight=50 * 6371): |
517
|
|
|
"""Computes the magnetic longitude at the specified magnetic local time |
518
|
|
|
and UT. |
519
|
|
|
|
520
|
|
|
Parameters |
521
|
|
|
========== |
522
|
|
|
mlt : array_like |
523
|
|
|
Magnetic local time |
524
|
|
|
datetime : :class:`datetime.datetime` |
525
|
|
|
Date and time |
526
|
|
|
ssheight : float, optional |
527
|
|
|
Altitude in km to use for converting the subsolar point from |
528
|
|
|
geographic to magnetic coordinates. A high altitude is used |
529
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
530
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
531
|
|
|
|
532
|
|
|
Returns |
533
|
|
|
======= |
534
|
|
|
mlon : ndarray or float |
535
|
|
|
Magnetic longitude [0, 360) (apex and quasi-dipole longitude are |
536
|
|
|
always equal) |
537
|
|
|
|
538
|
|
|
Notes |
539
|
|
|
===== |
540
|
|
|
To compute the magnetic longitude, we find the apex longitude of the |
541
|
|
|
subsolar point at the given time. Then the magnetic longitude of the |
542
|
|
|
given point will be computed from the separation in magnetic local time |
543
|
|
|
from this point (1 hour = 15 degrees). |
544
|
|
|
""" |
545
|
|
|
|
546
|
|
|
ssglat, ssglon = helpers.subsol(datetime) |
547
|
|
|
ssalat, ssalon = self.geo2apex(ssglat, ssglon, ssheight) |
548
|
|
|
|
549
|
|
|
# np.float64 will ensure lists are converted to arrays |
550
|
|
|
return (15 * np.float64(mlt) - 180 + ssalon + 360) % 360 |
551
|
|
|
|
552
|
|
|
def map_to_height(self, glat, glon, height, newheight, conjugate=False, |
553
|
|
|
precision=1e-10): |
554
|
|
|
"""Performs mapping of points along the magnetic field to the closest |
555
|
|
|
or conjugate hemisphere. |
556
|
|
|
|
557
|
|
|
Parameters |
558
|
|
|
========== |
559
|
|
|
glat : array_like |
560
|
|
|
Geodetic latitude |
561
|
|
|
glon : array_like |
562
|
|
|
Geodetic longitude |
563
|
|
|
height : array_like |
564
|
|
|
Source altitude in km |
565
|
|
|
newheight : array_like |
566
|
|
|
Destination altitude in km |
567
|
|
|
conjugate : bool, optional |
568
|
|
|
Map to `newheight` in the conjugate hemisphere instead of the |
569
|
|
|
closest hemisphere |
570
|
|
|
precision : float, optional |
571
|
|
|
Precision of output (degrees). A negative value of this argument |
572
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
573
|
|
|
on their spherical harmonic representation. A positive value causes |
574
|
|
|
the underlying Fortran routine to iterate until feeding the output |
575
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
576
|
|
|
within the specified precision. |
577
|
|
|
|
578
|
|
|
Returns |
579
|
|
|
======= |
580
|
|
|
newglat : ndarray or float |
581
|
|
|
Geodetic latitude of mapped point |
582
|
|
|
newglon : ndarray or float |
583
|
|
|
Geodetic longitude of mapped point |
584
|
|
|
error : ndarray or float |
585
|
|
|
The angular difference (degrees) between the input QD coordinates |
586
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
587
|
|
|
into geo2qd (APXG2Q) |
588
|
|
|
|
589
|
|
|
Notes |
590
|
|
|
===== |
591
|
|
|
The mapping is done by converting glat/glon/height to modified apex |
592
|
|
|
lat/lon, and converting back to geographic using newheight (if |
593
|
|
|
conjugate, use negative apex latitude when converting back) |
594
|
|
|
|
595
|
|
|
""" |
596
|
|
|
|
597
|
|
|
alat, alon = self.geo2apex(glat, glon, height) |
598
|
|
|
if conjugate: |
599
|
|
|
alat = -alat |
600
|
|
|
try: |
601
|
|
|
newglat, newglon, error = self.apex2geo(alat, alon, newheight, |
602
|
|
|
precision=precision) |
603
|
|
|
except ApexHeightError: |
604
|
|
|
raise ApexHeightError("newheight is > apex height") |
605
|
|
|
|
606
|
|
|
return newglat, newglon, error |
607
|
|
|
|
608
|
|
|
def _map_EV_to_height(self, alat, alon, height, newheight, X, EV): |
609
|
|
|
|
610
|
|
|
# make sure X is array of correct shape |
611
|
|
|
if (not (np.ndim(X) == 1 and np.size(X) == 3) and |
612
|
|
|
not (np.ndim(X) == 2 and np.shape(X)[0] == 3)): |
613
|
|
|
# raise ValueError because if passing e.g. a (6,) ndarray the |
614
|
|
|
# reshape below will work even though the input is invalid |
615
|
|
|
raise ValueError(EV + ' must be (3, N) or (3,) ndarray') |
616
|
|
|
X = np.reshape(X, (3, np.size(X) // 3)) |
617
|
|
|
|
618
|
|
|
_, _, _, _, _, _, d1, d2, _, e1, e2, _ = self.basevectors_apex(alat, alon, height, coords='apex') |
619
|
|
|
|
620
|
|
|
if EV == 'E': |
621
|
|
|
v1 = e1 |
622
|
|
|
v2 = e2 |
623
|
|
|
else: |
624
|
|
|
v1 = d1 |
625
|
|
|
v2 = d2 |
626
|
|
|
|
627
|
|
|
# make sure v1 and v2 have shape (3, N) |
628
|
|
|
v1 = np.reshape(v1, (3, v1.size // 3)) |
629
|
|
|
v2 = np.reshape(v2, (3, v2.size // 3)) |
630
|
|
|
|
631
|
|
|
X1 = np.sum(X * v1, axis=0) # E dot e1 or V dot d1 |
632
|
|
|
X2 = np.sum(X * v2, axis=0) # E dot e2 or V dot d2 |
633
|
|
|
|
634
|
|
|
_, _, _, _, _, _, d1, d2, _, e1, e2, _ = self.basevectors_apex(alat, alon, newheight, coords='apex') |
635
|
|
|
|
636
|
|
|
if EV == 'E': |
637
|
|
|
v1 = d1 |
638
|
|
|
v2 = d2 |
639
|
|
|
else: |
640
|
|
|
v1 = e1 |
641
|
|
|
v2 = e2 |
642
|
|
|
|
643
|
|
|
# make sure v1 and v2 have shape (3, N) |
644
|
|
|
v1 = np.reshape(v1, (3, v1.size // 3)) |
645
|
|
|
v2 = np.reshape(v2, (3, v2.size // 3)) |
646
|
|
|
|
647
|
|
|
X_mapped = X1[np.newaxis, :] * v1 + X2[np.newaxis, :] * v2 |
648
|
|
|
|
649
|
|
|
return np.squeeze(X_mapped) |
650
|
|
|
|
651
|
|
|
def map_E_to_height(self, alat, alon, height, newheight, E): |
652
|
|
|
"""Performs mapping of electric field along the magnetic field. |
653
|
|
|
|
654
|
|
|
It is assumed that the electric field is perpendicular to B. |
655
|
|
|
|
656
|
|
|
Parameters |
657
|
|
|
========== |
658
|
|
|
alat : (N,) array_like or float |
659
|
|
|
Modified apex latitude |
660
|
|
|
alon : (N,) array_like or float |
661
|
|
|
Modified apex longitude |
662
|
|
|
height : (N,) array_like or float |
663
|
|
|
Source altitude in km |
664
|
|
|
newheight : (N,) array_like or float |
665
|
|
|
Destination altitude in km |
666
|
|
|
E : (3,) or (3, N) array_like |
667
|
|
|
Electric field (at `alat`, `alon`, `height`) in geodetic east, |
668
|
|
|
north, and up components |
669
|
|
|
|
670
|
|
|
Returns |
671
|
|
|
======= |
672
|
|
|
E : (3, N) or (3,) ndarray |
673
|
|
|
The electric field at `newheight` (geodetic east, north, and up |
674
|
|
|
components) |
675
|
|
|
|
676
|
|
|
""" |
677
|
|
|
return self._map_EV_to_height(alat, alon, height, newheight, E, 'E') |
678
|
|
|
|
679
|
|
|
def map_V_to_height(self, alat, alon, height, newheight, V): |
680
|
|
|
"""Performs mapping of electric drift velocity along the magnetic field. |
681
|
|
|
|
682
|
|
|
It is assumed that the electric field is perpendicular to B. |
683
|
|
|
|
684
|
|
|
Parameters |
685
|
|
|
========== |
686
|
|
|
alat : (N,) array_like or float |
687
|
|
|
Modified apex latitude |
688
|
|
|
alon : (N,) array_like or float |
689
|
|
|
Modified apex longitude |
690
|
|
|
height : (N,) array_like or float |
691
|
|
|
Source altitude in km |
692
|
|
|
newheight : (N,) array_like or float |
693
|
|
|
Destination altitude in km |
694
|
|
|
V : (3,) or (3, N) array_like |
695
|
|
|
Electric drift velocity (at `alat`, `alon`, `height`) in geodetic |
696
|
|
|
east, north, and up components |
697
|
|
|
|
698
|
|
|
Returns |
699
|
|
|
======= |
700
|
|
|
V : (3, N) or (3,) ndarray |
701
|
|
|
The electric drift velocity at `newheight` (geodetic east, north, |
702
|
|
|
and up components) |
703
|
|
|
|
704
|
|
|
""" |
705
|
|
|
|
706
|
|
|
return self._map_EV_to_height(alat, alon, height, newheight, V, 'V') |
707
|
|
|
|
708
|
|
|
def basevectors_qd(self, lat, lon, height, coords='geo', precision=1e-10): |
709
|
|
|
"""Returns quasi-dipole base vectors f1 and f2 at the specified |
710
|
|
|
coordinates. |
711
|
|
|
|
712
|
|
|
The vectors are described by Richmond [1995] [2]_ and |
713
|
|
|
Emmert et al. [2010] [3]_. The vector components are geodetic east and |
714
|
|
|
north. |
715
|
|
|
|
716
|
|
|
Parameters |
717
|
|
|
========== |
718
|
|
|
lat : (N,) array_like or float |
719
|
|
|
Latitude |
720
|
|
|
lon : (N,) array_like or float |
721
|
|
|
Longitude |
722
|
|
|
height : (N,) array_like or float |
723
|
|
|
Altitude in km |
724
|
|
|
coords : {'geo', 'apex', 'qd'}, optional |
725
|
|
|
Input coordinate system |
726
|
|
|
precision : float, optional |
727
|
|
|
Precision of output (degrees) when converting to geo. A negative |
728
|
|
|
value of this argument produces a low-precision calculation of |
729
|
|
|
geodetic lat/lon based only on their spherical harmonic |
730
|
|
|
representation. |
731
|
|
|
A positive value causes the underlying Fortran routine to iterate |
732
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
733
|
|
|
the input QD lat/lon to within the specified precision (all |
734
|
|
|
coordinates being converted to geo are converted to QD first and |
735
|
|
|
passed through APXG2Q). |
736
|
|
|
|
737
|
|
|
Returns |
738
|
|
|
======= |
739
|
|
|
f1 : (2, N) or (2,) ndarray |
740
|
|
|
f2 : (2, N) or (2,) ndarray |
741
|
|
|
|
742
|
|
|
References |
743
|
|
|
========== |
744
|
|
|
.. [2] Richmond, A. D. (1995), Ionospheric Electrodynamics Using |
745
|
|
|
Magnetic Apex Coordinates, Journal of geomagnetism and |
746
|
|
|
geoelectricity, 47(2), 191–212, :doi:`10.5636/jgg.47.191`. |
747
|
|
|
|
748
|
|
|
.. [3] Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), |
749
|
|
|
A computationally compact representation of Magnetic-Apex |
750
|
|
|
and Quasi-Dipole coordinates with smooth base vectors, |
751
|
|
|
J. Geophys. Res., 115(A8), A08322, :doi:`10.1029/2010JA015326`. |
752
|
|
|
|
753
|
|
|
""" |
754
|
|
|
|
755
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
756
|
|
|
precision=precision) |
757
|
|
|
|
758
|
|
|
f1, f2 = self._basevec(glat, glon, height) |
759
|
|
|
|
760
|
|
|
# if inputs are not scalar, each vector is an array of arrays, |
761
|
|
|
# so reshape to a single array |
762
|
|
|
if f1.dtype == object: |
763
|
|
|
f1 = np.vstack(f1).T |
764
|
|
|
f2 = np.vstack(f2).T |
765
|
|
|
|
766
|
|
|
return f1, f2 |
767
|
|
|
|
768
|
|
|
def basevectors_apex(self, lat, lon, height, coords='geo', precision=1e-10): |
769
|
|
|
"""Returns base vectors in quasi-dipole and apex coordinates. |
770
|
|
|
|
771
|
|
|
The vectors are described by Richmond [1995] [4]_ and |
772
|
|
|
Emmert et al. [2010] [5]_. The vector components are geodetic east, |
773
|
|
|
north, and up (only east and north for `f1` and `f2`). |
774
|
|
|
|
775
|
|
|
Parameters |
776
|
|
|
========== |
777
|
|
|
lat, lon : (N,) array_like or float |
778
|
|
|
Latitude |
779
|
|
|
lat : (N,) array_like or float |
780
|
|
|
Longitude |
781
|
|
|
height : (N,) array_like or float |
782
|
|
|
Altitude in km |
783
|
|
|
coords : {'geo', 'apex', 'qd'}, optional |
784
|
|
|
Input coordinate system |
785
|
|
|
precision : float, optional |
786
|
|
|
Precision of output (degrees) when converting to geo. A negative |
787
|
|
|
value of this argument produces a low-precision calculation of |
788
|
|
|
geodetic lat/lon based only on their spherical harmonic |
789
|
|
|
representation. |
790
|
|
|
A positive value causes the underlying Fortran routine to iterate |
791
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
792
|
|
|
the input QD lat/lon to within the specified precision (all |
793
|
|
|
coordinates being converted to geo are converted to QD first and |
794
|
|
|
passed through APXG2Q). |
795
|
|
|
|
796
|
|
|
Returns |
797
|
|
|
======= |
798
|
|
|
f1, f2 : (2, N) or (2,) ndarray |
799
|
|
|
f3, g1, g2, g3, d1, d2, d3, e1, e2, e3 : (3, N) or (3,) ndarray |
800
|
|
|
|
801
|
|
|
Note |
802
|
|
|
==== |
803
|
|
|
`f3`, `g1`, `g2`, and `g3` are not part of the Fortran code |
804
|
|
|
by Emmert et al. [2010] [5]_. They are calculated by this |
805
|
|
|
Python library according to the following equations in |
806
|
|
|
Richmond [1995] [4]_: |
807
|
|
|
|
808
|
|
|
* `g1`: Eqn. 6.3 |
809
|
|
|
* `g2`: Eqn. 6.4 |
810
|
|
|
* `g3`: Eqn. 6.5 |
811
|
|
|
* `f3`: Eqn. 6.8 |
812
|
|
|
|
813
|
|
|
References |
814
|
|
|
========== |
815
|
|
|
|
816
|
|
|
.. [4] Richmond, A. D. (1995), Ionospheric Electrodynamics Using |
817
|
|
|
Magnetic Apex Coordinates, Journal of geomagnetism and |
818
|
|
|
geoelectricity, 47(2), 191–212, :doi:`10.5636/jgg.47.191`. |
819
|
|
|
|
820
|
|
|
.. [5] Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), |
821
|
|
|
A computationally compact representation of Magnetic-Apex |
822
|
|
|
and Quasi-Dipole coordinates with smooth base vectors, |
823
|
|
|
J. Geophys. Res., 115(A8), A08322, :doi:`10.1029/2010JA015326`. |
824
|
|
|
|
825
|
|
|
""" |
826
|
|
|
|
827
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
828
|
|
|
precision=precision) |
829
|
|
|
|
830
|
|
|
returnvals = self._geo2apexall(glat, glon, height) |
831
|
|
|
qlat = np.float64(returnvals[0]) |
832
|
|
|
alat = np.float64(returnvals[2]) |
833
|
|
|
f1, f2 = returnvals[4:6] |
834
|
|
|
d1, d2, d3 = returnvals[7:10] |
835
|
|
|
e1, e2, e3 = returnvals[11:14] |
836
|
|
|
|
837
|
|
|
# if inputs are not scalar, each vector is an array of arrays, |
838
|
|
|
# so reshape to a single array |
839
|
|
|
if f1.dtype == object: |
840
|
|
|
f1 = np.vstack(f1).T |
841
|
|
|
f2 = np.vstack(f2).T |
842
|
|
|
d1 = np.vstack(d1).T |
843
|
|
|
d2 = np.vstack(d2).T |
844
|
|
|
d3 = np.vstack(d3).T |
845
|
|
|
e1 = np.vstack(e1).T |
846
|
|
|
e2 = np.vstack(e2).T |
847
|
|
|
e3 = np.vstack(e3).T |
848
|
|
|
|
849
|
|
|
# make sure arrays are 2D |
850
|
|
|
f1 = f1.reshape((2, f1.size // 2)) |
851
|
|
|
f2 = f2.reshape((2, f2.size // 2)) |
852
|
|
|
d1 = d1.reshape((3, d1.size // 3)) |
853
|
|
|
d2 = d2.reshape((3, d2.size // 3)) |
854
|
|
|
d3 = d3.reshape((3, d3.size // 3)) |
855
|
|
|
e1 = e1.reshape((3, e1.size // 3)) |
856
|
|
|
e2 = e2.reshape((3, e2.size // 3)) |
857
|
|
|
e3 = e3.reshape((3, e3.size // 3)) |
858
|
|
|
|
859
|
|
|
# compute f3, g1, g2, g3 |
860
|
|
|
F1 = np.vstack((f1, np.zeros_like(f1[0]))) |
861
|
|
|
F2 = np.vstack((f2, np.zeros_like(f2[0]))) |
862
|
|
|
F = np.cross(F1.T, F2.T).T[-1] |
863
|
|
|
cosI = helpers.getcosIm(alat) |
864
|
|
|
k = np.array([0, 0, 1], dtype=np.float64).reshape((3, 1)) |
865
|
|
|
g1 = ((self.RE + np.float64(height)) / (self.RE + self.refh)) ** (3 / 2) * d1 / F |
866
|
|
|
g2 = -1.0 / (2.0 * F * np.tan(np.radians(qlat))) * (k + ((self.RE + np.float64(height)) / |
867
|
|
|
(self.RE + self.refh)) * d2 / cosI) |
868
|
|
|
g3 = k * F |
869
|
|
|
f3 = np.cross(g1.T, g2.T).T |
870
|
|
|
|
871
|
|
|
if np.any(alat == -9999): |
872
|
|
|
warnings.warn(('Base vectors g, d, e, and f3 set to -9999 where ' |
873
|
|
|
'apex latitude is undefined (apex height may be < ' |
874
|
|
|
'reference height)')) |
875
|
|
|
f3 = np.where(alat == -9999, -9999, f3) |
876
|
|
|
g1 = np.where(alat == -9999, -9999, g1) |
877
|
|
|
g2 = np.where(alat == -9999, -9999, g2) |
878
|
|
|
g3 = np.where(alat == -9999, -9999, g3) |
879
|
|
|
d1 = np.where(alat == -9999, -9999, d1) |
880
|
|
|
d2 = np.where(alat == -9999, -9999, d2) |
881
|
|
|
d3 = np.where(alat == -9999, -9999, d3) |
882
|
|
|
e1 = np.where(alat == -9999, -9999, e1) |
883
|
|
|
e2 = np.where(alat == -9999, -9999, e2) |
884
|
|
|
e3 = np.where(alat == -9999, -9999, e3) |
885
|
|
|
|
886
|
|
|
return tuple(np.squeeze(x) for x in |
887
|
|
|
[f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, e3]) |
888
|
|
|
|
889
|
|
|
def get_apex(self, lat, height=None): |
890
|
|
|
""" Calculate apex height |
891
|
|
|
|
892
|
|
|
Parameters |
893
|
|
|
----------- |
894
|
|
|
lat : (float) |
895
|
|
|
Latitude in degrees |
896
|
|
|
height : (float or NoneType) |
897
|
|
|
Height above the surface of the earth in km or NoneType to use |
898
|
|
|
reference height (default=None) |
899
|
|
|
|
900
|
|
|
Returns |
901
|
|
|
---------- |
902
|
|
|
apex_height : (float) |
903
|
|
|
Height of the field line apex in km |
904
|
|
|
""" |
905
|
|
|
lat = helpers.checklat(lat, name='alat') |
906
|
|
|
if height is None: |
907
|
|
|
height = self.refh |
908
|
|
|
|
909
|
|
|
cos_lat_squared = np.cos(np.radians(lat)) ** 2 |
910
|
|
|
apex_height = (self.RE + height) / cos_lat_squared - self.RE |
911
|
|
|
|
912
|
|
|
return apex_height |
913
|
|
|
|
914
|
|
|
def set_epoch(self, year): |
915
|
|
|
"""Updates the epoch for all subsequent conversions. |
916
|
|
|
|
917
|
|
|
Parameters |
918
|
|
|
========== |
919
|
|
|
year : float |
920
|
|
|
Decimal year |
921
|
|
|
|
922
|
|
|
""" |
923
|
|
|
# f2py |
924
|
|
|
self.year = np.float64(year) |
925
|
|
|
fa.loadapxsh(self.datafile, self.year) |
926
|
|
|
fa.cofrm(self.year) |
927
|
|
|
|
928
|
|
|
def set_refh(self, refh): |
929
|
|
|
"""Updates the apex reference height for all subsequent conversions. |
930
|
|
|
|
931
|
|
|
Parameters |
932
|
|
|
========== |
933
|
|
|
refh : float |
934
|
|
|
Apex reference height in km |
935
|
|
|
|
936
|
|
|
Notes |
937
|
|
|
===== |
938
|
|
|
The reference height is the height to which field lines will be mapped, |
939
|
|
|
and is only relevant for conversions involving apex (not quasi-dipole). |
940
|
|
|
|
941
|
|
|
""" |
942
|
|
|
self.refh = refh |
943
|
|
|
|
944
|
|
|
def _get_babs_nonvectorized(self, glat, glon, height): |
945
|
|
|
bnorth, beast, bdown, babs = fa.feldg(1, glat, glon, height) |
946
|
|
|
# BABS is in guass, so convert to tesla |
947
|
|
|
return babs / 10000.0 |
948
|
|
|
|
949
|
|
|
def get_babs(self, glat, glon, height): |
950
|
|
|
"""Returns the magnitude of the IGRF magnetic field in tesla. |
951
|
|
|
|
952
|
|
|
Parameters |
953
|
|
|
========== |
954
|
|
|
glat : array_like |
955
|
|
|
Geodetic latitude |
956
|
|
|
glon : array_like |
957
|
|
|
Geodetic longitude |
958
|
|
|
height : array_like |
959
|
|
|
Altitude in km |
960
|
|
|
|
961
|
|
|
Returns |
962
|
|
|
======= |
963
|
|
|
babs : ndarray or float |
964
|
|
|
Magnitude of the IGRF magnetic field |
965
|
|
|
|
966
|
|
|
""" |
967
|
|
|
|
968
|
|
|
babs = self._get_babs(glat, glon, height) |
969
|
|
|
|
970
|
|
|
# if array is returned, the dtype is object, so convert to float |
971
|
|
|
return np.float64(babs) |
972
|
|
|
|
973
|
|
|
def bvectors_apex(self, lat, lon, height, coords='geo', precision=1e-10): |
974
|
|
|
"""Returns the magnetic field vectors in apex coordinates. |
975
|
|
|
|
976
|
|
|
The apex magnetic field vectors described by Richmond [1995] [4]_ and |
977
|
|
|
Emmert et al. [2010] [5]_, specfically the Be3 and Bd3 components. The |
978
|
|
|
vector components are geodetic east, north, and up. |
979
|
|
|
|
980
|
|
|
Parameters |
981
|
|
|
========== |
982
|
|
|
lat, lon : (N,) array_like or float |
983
|
|
|
Latitude |
984
|
|
|
lat : (N,) array_like or float |
985
|
|
|
Longitude |
986
|
|
|
height : (N,) array_like or float |
987
|
|
|
Altitude in km |
988
|
|
|
coords : {'geo', 'apex', 'qd'}, optional |
989
|
|
|
Input coordinate system |
990
|
|
|
precision : float, optional |
991
|
|
|
Precision of output (degrees) when converting to geo. A negative |
992
|
|
|
value of this argument produces a low-precision calculation of |
993
|
|
|
geodetic lat/lon based only on their spherical harmonic |
994
|
|
|
representation. |
995
|
|
|
A positive value causes the underlying Fortran routine to iterate |
996
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
997
|
|
|
the input QD lat/lon to within the specified precision (all |
998
|
|
|
coordinates being converted to geo are converted to QD first and |
999
|
|
|
passed through APXG2Q). |
1000
|
|
|
|
1001
|
|
|
Returns |
1002
|
|
|
======= |
1003
|
|
|
Be3: (1, N) or (1,) ndarray |
1004
|
|
|
e3 : (3, N) or (3,) ndarray |
1005
|
|
|
Bd3: (1, N) or (1,) ndarray |
1006
|
|
|
d3 : (3, N) or (3,) ndarray |
1007
|
|
|
|
1008
|
|
|
Note |
1009
|
|
|
==== |
1010
|
|
|
Be3 is not equivalent to the magnitude of the IGRF magnitude, but is |
1011
|
|
|
instead equal to the IGRF magnitude divided by a scaling factor, D. |
1012
|
|
|
Similarly, Bd3 is the IGRF magnitude multiplied by D. |
1013
|
|
|
|
1014
|
|
|
See Richmond, A. D. (1995) [4]_ equations 3.13 and 3.14 |
1015
|
|
|
|
1016
|
|
|
References |
1017
|
|
|
========== |
1018
|
|
|
|
1019
|
|
|
.. [4] Richmond, A. D. (1995), Ionospheric Electrodynamics Using |
1020
|
|
|
Magnetic Apex Coordinates, Journal of geomagnetism and |
1021
|
|
|
geoelectricity, 47(2), 191–212, :doi:`10.5636/jgg.47.191`. |
1022
|
|
|
|
1023
|
|
|
.. [5] Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), |
1024
|
|
|
A computationally compact representation of Magnetic-Apex |
1025
|
|
|
and Quasi-Dipole coordinates with smooth base vectors, |
1026
|
|
|
J. Geophys. Res., 115(A8), A08322, :doi:`10.1029/2010JA015326`. |
1027
|
|
|
|
1028
|
|
|
""" |
1029
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
1030
|
|
|
precision=precision) |
1031
|
|
|
|
1032
|
|
|
babs = self.get_babs(glat, glon, height) |
1033
|
|
|
|
1034
|
|
|
_, _, _, _, _, _, d1, d2, d3, _, _, e3 = self.basevectors_apex(glat, glon, height, coords='geo') |
1035
|
|
|
d1_cross_d2 = np.cross(d1.T, d2.T).T |
1036
|
|
|
D = np.sqrt(np.sum(d1_cross_d2 ** 2, axis=0)) |
1037
|
|
|
|
1038
|
|
|
Be3 = babs / D |
1039
|
|
|
Bd3 = babs * D |
1040
|
|
|
|
1041
|
|
|
return Be3, e3, Bd3, d3 |
1042
|
|
|
|