Total Complexity | 135 |
Total Lines | 1147 |
Duplicated Lines | 7.15 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like test_Apex often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
2 | """Test the apexpy.Apex class |
||
3 | |||
4 | Notes |
||
5 | ----- |
||
6 | Whenever function outputs are tested against hard-coded numbers, the test |
||
7 | results (numbers) were obtained by running the code that is tested. Therefore, |
||
8 | these tests below only check that nothing changes when refactoring, etc., and |
||
9 | not if the results are actually correct. |
||
10 | |||
11 | These results are expected to change when IGRF is updated. |
||
12 | |||
13 | """ |
||
14 | |||
15 | import datetime as dt |
||
16 | import numpy as np |
||
17 | import os |
||
18 | import pytest |
||
19 | import warnings |
||
20 | |||
21 | from apexpy import fortranapex as fa |
||
22 | from apexpy import Apex, ApexHeightError, helpers |
||
23 | |||
24 | |||
25 | @pytest.fixture() |
||
26 | def igrf_file(): |
||
27 | """A fixture for handling the coefficient file.""" |
||
28 | # Ensure the coefficient file exists |
||
29 | original_file = os.path.join(os.path.dirname(helpers.__file__), |
||
30 | 'igrf13coeffs.txt') |
||
31 | tmp_file = "temp_coeff.txt" |
||
32 | assert os.path.isfile(original_file) |
||
33 | |||
34 | # Move the coefficient file |
||
35 | os.rename(original_file, tmp_file) |
||
36 | yield original_file |
||
37 | |||
38 | # Move the coefficient file back |
||
39 | os.rename(tmp_file, original_file) |
||
40 | return |
||
41 | |||
42 | |||
43 | def test_set_epoch_file_error(igrf_file): |
||
44 | """Test raises OSError when IGRF coefficient file is missing.""" |
||
45 | # Test missing coefficient file failure |
||
46 | with pytest.raises(OSError) as oerr: |
||
47 | Apex() |
||
48 | error_string = "File {:} does not exist".format(igrf_file) |
||
49 | assert str(oerr.value).startswith(error_string) |
||
50 | return |
||
51 | |||
52 | |||
53 | class TestApexInit(): |
||
54 | def setup(self): |
||
55 | self.apex_out = None |
||
56 | self.test_date = dt.datetime.utcnow() |
||
57 | self.test_refh = 0 |
||
58 | self.bad_file = 'foo/path/to/datafile.blah' |
||
59 | |||
60 | def teardown(self): |
||
61 | del self.apex_out, self.test_date, self.test_refh, self.bad_file |
||
62 | |||
63 | def eval_date(self): |
||
64 | """Evaluate the times in self.test_date and self.apex_out.""" |
||
65 | if isinstance(self.test_date, dt.datetime) \ |
||
66 | or isinstance(self.test_date, dt.date): |
||
67 | self.test_date = helpers.toYearFraction(self.test_date) |
||
68 | |||
69 | # Assert the times are the same on the order of tens of seconds. |
||
70 | # Necessary to evaluate the current UTC |
||
71 | np.testing.assert_almost_equal(self.test_date, self.apex_out.year, 6) |
||
72 | return |
||
73 | |||
74 | def eval_refh(self): |
||
75 | """Evaluate the reference height in self.refh and self.apex_out.""" |
||
76 | eval_str = "".join(["expected reference height [", |
||
77 | "{:}] not equal to Apex ".format(self.test_refh), |
||
78 | "reference height ", |
||
79 | "[{:}]".format(self.apex_out.refh)]) |
||
80 | assert self.test_refh == self.apex_out.refh, eval_str |
||
81 | return |
||
82 | |||
83 | def test_init_defaults(self): |
||
84 | """Test Apex class default initialization.""" |
||
85 | self.apex_out = Apex() |
||
86 | self.eval_date() |
||
87 | self.eval_refh() |
||
88 | return |
||
89 | |||
90 | @pytest.mark.parametrize("in_date", |
||
91 | [2015, 2015.5, dt.date(2015, 1, 1), |
||
92 | dt.datetime(2015, 6, 1, 18, 23, 45)]) |
||
93 | def test_init_date(self, in_date): |
||
94 | """Test Apex class with date initialization.""" |
||
95 | self.test_date = in_date |
||
96 | self.apex_out = Apex(date=self.test_date) |
||
97 | self.eval_date() |
||
98 | self.eval_refh() |
||
99 | return |
||
100 | |||
101 | @pytest.mark.parametrize("new_date", [2015, 2015.5]) |
||
102 | def test_set_epoch(self, new_date): |
||
103 | """Test successful setting of Apex epoch after initialization.""" |
||
104 | # Evaluate the default initialization |
||
105 | self.apex_out = Apex() |
||
106 | self.eval_date() |
||
107 | self.eval_refh() |
||
108 | |||
109 | # Update the epoch |
||
110 | self.test_date = new_date |
||
111 | self.apex_out.set_epoch(new_date) |
||
112 | self.eval_date() |
||
113 | self.eval_refh() |
||
114 | return |
||
115 | |||
116 | @pytest.mark.parametrize("in_refh", [0.0, 300.0, 30000.0, -1.0]) |
||
117 | def test_init_refh(self, in_refh): |
||
118 | """Test Apex class with reference height initialization.""" |
||
119 | self.test_refh = in_refh |
||
120 | self.apex_out = Apex(refh=self.test_refh) |
||
121 | self.eval_date() |
||
122 | self.eval_refh() |
||
123 | return |
||
124 | |||
125 | @pytest.mark.parametrize("new_refh", [0.0, 300.0, 30000.0, -1.0]) |
||
126 | def test_set_refh(self, new_refh): |
||
127 | """Test the method used to set the reference height after the init.""" |
||
128 | # Verify the defaults are set |
||
129 | self.apex_out = Apex(date=self.test_date) |
||
130 | self.eval_date() |
||
131 | self.eval_refh() |
||
132 | |||
133 | # Update to a new reference height and test |
||
134 | self.test_refh = new_refh |
||
135 | self.apex_out.set_refh(new_refh) |
||
136 | self.eval_refh() |
||
137 | return |
||
138 | |||
139 | def test_init_with_bad_datafile(self): |
||
140 | """Test raises IOError with non-existent datafile input.""" |
||
141 | with pytest.raises(IOError) as oerr: |
||
142 | Apex(datafile=self.bad_file) |
||
143 | assert str(oerr.value).startswith('Data file does not exist') |
||
144 | return |
||
145 | |||
146 | def test_init_with_bad_fortranlib(self): |
||
147 | """Test raises IOError with non-existent datafile input.""" |
||
148 | with pytest.raises(IOError) as oerr: |
||
149 | Apex(fortranlib=self.bad_file) |
||
150 | assert str(oerr.value).startswith('Fortran library does not exist') |
||
151 | return |
||
152 | |||
153 | |||
154 | class TestApexMethod(): |
||
155 | """Test the Apex methods.""" |
||
156 | def setup(self): |
||
157 | """Initialize all tests.""" |
||
158 | self.apex_out = Apex(date=2000, refh=300) |
||
159 | |||
160 | def teardown(self): |
||
161 | """Clean up after each test.""" |
||
162 | del self.apex_out |
||
163 | |||
164 | def get_input_args(self, method_name, lat, lon, alt, precision=0.0): |
||
165 | """Set the input arguments for the different Apex methods. |
||
166 | |||
167 | Parameters |
||
168 | ---------- |
||
169 | method_name : str |
||
170 | Name of the Apex class method |
||
171 | lat : float or array-like |
||
172 | Value for the latitude |
||
173 | lon : float or array-like |
||
174 | Value for the longitude |
||
175 | alt : float or array-like |
||
176 | Value for the altitude |
||
177 | precision : float |
||
178 | Value for the precision (default=0.0) |
||
179 | |||
180 | Returns |
||
181 | ------- |
||
182 | in_args : list |
||
183 | List of the appropriate input arguments |
||
184 | |||
185 | """ |
||
186 | in_args = [lat, lon, alt] |
||
187 | |||
188 | # Add precision, if needed |
||
189 | if method_name in ["_qd2geo", "apxq2g", "apex2geo", "qd2geo", |
||
190 | "_apex2geo"]: |
||
191 | in_args.append(precision) |
||
192 | |||
193 | # Add a reference height, if needed |
||
194 | if method_name in ["apxg2all"]: |
||
195 | in_args.append(300) |
||
196 | |||
197 | # Add a vector flag, if needed |
||
198 | if method_name in ["apxg2all", "apxg2q"]: |
||
199 | in_args.append(1) |
||
200 | |||
201 | return in_args |
||
202 | |||
203 | View Code Duplication | @pytest.mark.parametrize("apex_method,fortran_method,fslice", |
|
|
|||
204 | [("_geo2qd", "apxg2q", slice(0, 2, 1)), |
||
205 | ("_geo2apex", "apxg2all", slice(2, 4, 1)), |
||
206 | ("_qd2geo", "apxq2g", slice(None)), |
||
207 | ("_basevec", "apxg2q", slice(2, 4, 1))]) |
||
208 | @pytest.mark.parametrize("lat", [(0), (30), (60), (89)]) |
||
209 | @pytest.mark.parametrize("lon", [(-179), (-90), (0), (90), (180)]) |
||
210 | def test_fortran_scalar_input(self, apex_method, fortran_method, fslice, |
||
211 | lat, lon): |
||
212 | """Tests Apex/fortran interface consistency for scalars.""" |
||
213 | # Get the Apex class method and the fortran function call |
||
214 | apex_func = getattr(self.apex_out, apex_method) |
||
215 | fortran_func = getattr(fa, fortran_method) |
||
216 | |||
217 | # Get the appropriate input arguments |
||
218 | apex_args = self.get_input_args(apex_method, lat, lon, 100) |
||
219 | fortran_args = self.get_input_args(fortran_method, lat, lon, 100) |
||
220 | |||
221 | # Evaluate the equivalent function calls |
||
222 | np.testing.assert_allclose(apex_func(*apex_args), |
||
223 | fortran_func(*fortran_args)[fslice]) |
||
224 | return |
||
225 | |||
226 | View Code Duplication | @pytest.mark.parametrize("apex_method,fortran_method,fslice", |
|
227 | [("_geo2qd", "apxg2q", slice(0, 2, 1)), |
||
228 | ("_geo2apex", "apxg2all", slice(2, 4, 1)), |
||
229 | ("_qd2geo", "apxq2g", slice(None)), |
||
230 | ("_basevec", "apxg2q", slice(2, 4, 1))]) |
||
231 | @pytest.mark.parametrize("lat", [(0), (30), (60), (89)]) |
||
232 | @pytest.mark.parametrize("lon1,lon2", [(180, 180), (-180, -180), |
||
233 | (180, -180), (-180, 180), |
||
234 | (-345, 15), (375, 15)]) |
||
235 | def test_fortran_longitude_rollover(self, apex_method, fortran_method, |
||
236 | fslice, lat, lon1, lon2): |
||
237 | """Tests Apex/fortran interface consistency for longitude rollover.""" |
||
238 | # Get the Apex class method and the fortran function call |
||
239 | apex_func = getattr(self.apex_out, apex_method) |
||
240 | fortran_func = getattr(fa, fortran_method) |
||
241 | |||
242 | # Get the appropriate input arguments |
||
243 | apex_args = self.get_input_args(apex_method, lat, lon1, 100) |
||
244 | fortran_args = self.get_input_args(fortran_method, lat, lon2, 100) |
||
245 | |||
246 | # Evaluate the equivalent function calls |
||
247 | np.testing.assert_allclose(apex_func(*apex_args), |
||
248 | fortran_func(*fortran_args)[fslice]) |
||
249 | return |
||
250 | |||
251 | @pytest.mark.parametrize("apex_method,fortran_method,fslice", |
||
252 | [("_geo2qd", "apxg2q", slice(0, 2, 1)), |
||
253 | ("_geo2apex", "apxg2all", slice(2, 4, 1)), |
||
254 | ("_qd2geo", "apxq2g", slice(None)), |
||
255 | ("_basevec", "apxg2q", slice(2, 4, 1))]) |
||
256 | def test_fortran_array_input(self, apex_method, fortran_method, fslice): |
||
257 | """Tests Apex/fortran interface consistency for array input.""" |
||
258 | # Get the Apex class method and the fortran function call |
||
259 | apex_func = getattr(self.apex_out, apex_method) |
||
260 | fortran_func = getattr(fa, fortran_method) |
||
261 | |||
262 | # Set up the input arrays |
||
263 | in_lats = np.array([0, 30, 60, 90]) |
||
264 | in_lon = 15 |
||
265 | in_alts = np.array([100, 200, 300, 400]) |
||
266 | apex_args = self.get_input_args(apex_method, in_lats.reshape((2, 2)), |
||
267 | in_lon, in_alts.reshape((2, 2))) |
||
268 | |||
269 | # Get the Apex class results |
||
270 | aret = apex_func(*apex_args) |
||
271 | |||
272 | # Get the fortran function results |
||
273 | flats = list() |
||
274 | flons = list() |
||
275 | |||
276 | for i, lat in enumerate(in_lats): |
||
277 | fortran_args = self.get_input_args(fortran_method, lat, in_lon, |
||
278 | in_alts[i]) |
||
279 | fret = fortran_func(*fortran_args)[fslice] |
||
280 | flats.append(fret[0]) |
||
281 | flons.append(fret[1]) |
||
282 | |||
283 | flats = np.array(flats) |
||
284 | flons = np.array(flons) |
||
285 | |||
286 | # Evaluate results |
||
287 | try: |
||
288 | # This returned value is array of floats |
||
289 | np.testing.assert_allclose(aret[0].astype(float), |
||
290 | flats.reshape((2, 2)).astype(float)) |
||
291 | np.testing.assert_allclose(aret[1].astype(float), |
||
292 | flons.reshape((2, 2)).astype(float)) |
||
293 | except ValueError: |
||
294 | # This returned value is array of arrays |
||
295 | alats = aret[0].reshape((4,)) |
||
296 | alons = aret[1].reshape((4,)) |
||
297 | for i, flat in enumerate(flats): |
||
298 | np.testing.assert_array_almost_equal(alats[i], flat, 2) |
||
299 | np.testing.assert_array_almost_equal(alons[i], flons[i], 2) |
||
300 | |||
301 | return |
||
302 | |||
303 | @pytest.mark.parametrize("lat", [(0), (30), (60), (89)]) |
||
304 | @pytest.mark.parametrize("lon", [(-179), (-90), (0), (90), (180)]) |
||
305 | def test_geo2apexall_scalar(self, lat, lon): |
||
306 | """Test Apex/fortran geo2apexall interface consistency for scalars.""" |
||
307 | # Get the Apex and Fortran results |
||
308 | aret = self.apex_out._geo2apexall(lat, lon, 100) |
||
309 | fret = fa.apxg2all(lat, lon, 100, 300, 1) |
||
310 | |||
311 | # Evaluate each element in the results |
||
312 | for aval, fval in zip(aret, fret): |
||
313 | np.testing.assert_allclose(aval, fval) |
||
314 | |||
315 | def test_geo2apexall_array(self): |
||
316 | """Test Apex/fortran geo2apexall interface consistency for arrays.""" |
||
317 | # Set the input |
||
318 | in_lats = np.array([0, 30, 60, 90]) |
||
319 | in_lon = 15 |
||
320 | in_alts = np.array([100, 200, 300, 400]) |
||
321 | |||
322 | # Get the Apex class results |
||
323 | aret = self.apex_out._geo2apexall(in_lats.reshape((2, 2)), in_lon, |
||
324 | in_alts.reshape((2, 2))) |
||
325 | |||
326 | # For each lat/alt pair, get the Fortran results |
||
327 | fret = list() |
||
328 | for i, lat in enumerate(in_lats): |
||
329 | fret.append(fa.apxg2all(in_lats[i], in_lon, in_alts[i], 300, 1)) |
||
330 | |||
331 | # Cycle through all returned values |
||
332 | for i, ret in enumerate(aret): |
||
333 | try: |
||
334 | # This returned value is array of floats |
||
335 | np.testing.assert_allclose(ret.astype(float), |
||
336 | np.array([[fret[0][i], fret[1][i]], |
||
337 | [fret[2][i], fret[3][i]]], |
||
338 | dtype=float)) |
||
339 | except ValueError: |
||
340 | # This returned value is array of arrays |
||
341 | ret = ret.reshape((4,)) |
||
342 | for j, single_fret in enumerate(fret): |
||
343 | np.testing.assert_allclose(ret[j], single_fret[i]) |
||
344 | return |
||
345 | |||
346 | @pytest.mark.parametrize("in_coord", ["geo", "apex", "qd"]) |
||
347 | @pytest.mark.parametrize("out_coord", ["geo", "apex", "qd"]) |
||
348 | def test_convert_consistency(self, in_coord, out_coord): |
||
349 | """Test the self-consistency of the Apex convert method.""" |
||
350 | if in_coord == out_coord: |
||
351 | pytest.skip("Test not needed for same src and dest coordinates") |
||
352 | |||
353 | # Define the method name |
||
354 | method_name = "2".join([in_coord, out_coord]) |
||
355 | |||
356 | # Get the method and method inputs |
||
357 | convert_kwargs = {'height': 100, 'precision': 0.0} |
||
358 | apex_args = self.get_input_args(method_name, 60, 15, 100) |
||
359 | apex_method = getattr(self.apex_out, method_name) |
||
360 | |||
361 | # Define the slice needed to get equivalent output from the named method |
||
362 | mslice = slice(0, -1, 1) if out_coord == "geo" else slice(None) |
||
363 | |||
364 | # Get output using convert and named method |
||
365 | convert_out = self.apex_out.convert(60, 15, in_coord, out_coord, |
||
366 | **convert_kwargs) |
||
367 | method_out = apex_method(*apex_args)[mslice] |
||
368 | |||
369 | # Compare both outputs, should be identical |
||
370 | np.testing.assert_allclose(convert_out, method_out) |
||
371 | return |
||
372 | |||
373 | @pytest.mark.parametrize("bound_lat", [(90), (-90)]) |
||
374 | @pytest.mark.parametrize("in_coord", ["geo", "apex", "qd"]) |
||
375 | @pytest.mark.parametrize("out_coord", ["geo", "apex", "qd"]) |
||
376 | def test_convert_at_lat_boundary(self, bound_lat, in_coord, out_coord): |
||
377 | """Test the conversion at the latitude boundary, with allowed excess.""" |
||
378 | excess_lat = np.sign(bound_lat) * (abs(bound_lat) + 1.0e-5) |
||
379 | |||
380 | # Get the two outputs, slight tolerance outside of boundary allowed |
||
381 | bound_out = self.apex_out.convert(bound_lat, 0, in_coord, out_coord) |
||
382 | excess_out = self.apex_out.convert(excess_lat, 0, in_coord, out_coord) |
||
383 | |||
384 | # Test the outputs |
||
385 | np.testing.assert_allclose(excess_out, bound_out, rtol=0, atol=1e-8) |
||
386 | return |
||
387 | |||
388 | def test_convert_qd2apex_at_equator(self): |
||
389 | """Test the quasi-dipole to apex conversion at the magnetic equator.""" |
||
390 | eq_out = self.apex_out.convert(lat=0.0, lon=0, source='qd', dest='apex', |
||
391 | height=320.0) |
||
392 | close_out = self.apex_out.convert(lat=0.001, lon=0, source='qd', |
||
393 | dest='apex', height=320.0) |
||
394 | np.testing.assert_allclose(eq_out, close_out, atol=1e-4) |
||
395 | |||
396 | @pytest.mark.parametrize("src", ["geo", "apex", "qd"]) |
||
397 | @pytest.mark.parametrize("dest", ["geo", "apex", "qd"]) |
||
398 | def test_convert_withnan(self, src, dest): |
||
399 | """Test Apex.convert success with NaN input.""" |
||
400 | if src == dest: |
||
401 | pytest.skip("Test not needed for same src and dest coordinates") |
||
402 | |||
403 | num_nans = 5 |
||
404 | in_loc = np.arange(0, 10, dtype=float) |
||
405 | in_loc[:num_nans] = np.nan |
||
406 | |||
407 | out_loc = self.apex_out.convert(in_loc, in_loc, src, dest, height=320) |
||
408 | |||
409 | for out in out_loc: |
||
410 | assert np.all(np.isnan(out[:num_nans])), "NaN output expected" |
||
411 | assert np.all(np.isfinite(out[num_nans:])), "Finite output expected" |
||
412 | |||
413 | return |
||
414 | |||
415 | @pytest.mark.parametrize("bad_lat", [(91), (-91)]) |
||
416 | def test_convert_invalid_lat(self, bad_lat): |
||
417 | """Test convert raises ValueError for invalid latitudes.""" |
||
418 | |||
419 | with pytest.raises(ValueError): |
||
420 | self.apex_out.convert(bad_lat, 0, 'geo', 'geo') |
||
421 | return |
||
422 | |||
423 | @pytest.mark.parametrize("coords", [("foobar", "geo"), ("geo", "foobar")]) |
||
424 | def test_convert_invalid_transformation(self, coords): |
||
425 | """Test raises NotImplementedError for bad coordinates.""" |
||
426 | with pytest.raises(NotImplementedError): |
||
427 | self.apex_out.convert(0, 0, *coords) |
||
428 | return |
||
429 | |||
430 | @pytest.mark.parametrize("method_name, out_comp", |
||
431 | [("geo2apex", |
||
432 | (55.94841766357422, 94.10684204101562)), |
||
433 | ("apex2geo", |
||
434 | (51.476322174072266, -66.22817993164062, |
||
435 | 5.727287771151168e-06)), |
||
436 | ("geo2qd", |
||
437 | (56.531288146972656, 94.10684204101562)), |
||
438 | ("apex2qd", (60.498401178276744, 15.0)), |
||
439 | ("qd2apex", (59.49138097045895, 15.0))]) |
||
440 | def test_method_scalar_input(self, method_name, out_comp): |
||
441 | """Test the user method against set values with scalars.""" |
||
442 | # Get the desired methods |
||
443 | user_method = getattr(self.apex_out, method_name) |
||
444 | |||
445 | # Get the user output |
||
446 | user_out = user_method(60, 15, 100) |
||
447 | |||
448 | # Evaluate the user output |
||
449 | np.testing.assert_allclose(user_out, out_comp) |
||
450 | |||
451 | for out_val in user_out: |
||
452 | assert np.asarray(out_val).shape == (), "output is not a scalar" |
||
453 | return |
||
454 | |||
455 | @pytest.mark.parametrize("in_coord", ["geo", "apex", "qd"]) |
||
456 | @pytest.mark.parametrize("out_coord", ["geo", "apex", "qd"]) |
||
457 | @pytest.mark.parametrize("method_args, out_shape", |
||
458 | [([[60, 60], 15, 100], (2,)), |
||
459 | ([60, [15, 15], 100], (2,)), |
||
460 | ([60, 15, [100, 100]], (2,)), |
||
461 | ([[50, 60], [15, 16], [100, 200]], (2,))]) |
||
462 | def test_method_broadcast_input(self, in_coord, out_coord, method_args, |
||
463 | out_shape): |
||
464 | """Test the user method with inputs that require some broadcasting.""" |
||
465 | if in_coord == out_coord: |
||
466 | pytest.skip("Test not needed for same src and dest coordinates") |
||
467 | |||
468 | # Get the desired methods |
||
469 | method_name = "2".join([in_coord, out_coord]) |
||
470 | user_method = getattr(self.apex_out, method_name) |
||
471 | |||
472 | # Get the user output |
||
473 | user_out = user_method(*method_args) |
||
474 | |||
475 | # Evaluate the user output |
||
476 | for out_val in user_out: |
||
477 | assert hasattr(out_val, 'shape'), "output coordinate isn't np.array" |
||
478 | assert out_val.shape == out_shape |
||
479 | return |
||
480 | |||
481 | @pytest.mark.parametrize("in_coord", ["geo", "apex", "qd"]) |
||
482 | @pytest.mark.parametrize("out_coord", ["geo", "apex", "qd"]) |
||
483 | @pytest.mark.parametrize("bad_lat", [(91), (-91)]) |
||
484 | def test_method_invalid_lat(self, in_coord, out_coord, bad_lat): |
||
485 | """Test convert raises ValueError for invalid latitudes.""" |
||
486 | if in_coord == out_coord: |
||
487 | pytest.skip("Test not needed for same src and dest coordinates") |
||
488 | |||
489 | # Get the desired methods |
||
490 | method_name = "2".join([in_coord, out_coord]) |
||
491 | user_method = getattr(self.apex_out, method_name) |
||
492 | |||
493 | with pytest.raises(ValueError): |
||
494 | user_method(bad_lat, 15, 100) |
||
495 | return |
||
496 | |||
497 | @pytest.mark.parametrize("in_coord", ["geo", "apex", "qd"]) |
||
498 | @pytest.mark.parametrize("out_coord", ["geo", "apex", "qd"]) |
||
499 | @pytest.mark.parametrize("bound_lat", [(90), (-90)]) |
||
500 | def test_method_at_lat_boundary(self, in_coord, out_coord, bound_lat): |
||
501 | """Test user methods at the latitude boundary, with allowed excess.""" |
||
502 | if in_coord == out_coord: |
||
503 | pytest.skip("Test not needed for same src and dest coordinates") |
||
504 | |||
505 | # Get the desired methods |
||
506 | method_name = "2".join([in_coord, out_coord]) |
||
507 | user_method = getattr(self.apex_out, method_name) |
||
508 | |||
509 | # Get a latitude just beyond the limit |
||
510 | excess_lat = np.sign(bound_lat) * (abs(bound_lat) + 1.0e-5) |
||
511 | |||
512 | # Get the two outputs, slight tolerance outside of boundary allowed |
||
513 | bound_out = user_method(bound_lat, 0, 100) |
||
514 | excess_out = user_method(excess_lat, 0, 100) |
||
515 | |||
516 | # Test the outputs |
||
517 | np.testing.assert_allclose(excess_out, bound_out, rtol=0, atol=1e-8) |
||
518 | return |
||
519 | |||
520 | def test_geo2apex_undefined_warning(self): |
||
521 | """Test geo2apex warning and fill values for an undefined location.""" |
||
522 | |||
523 | # Update the apex object |
||
524 | self.apex_out = Apex(date=2000, refh=10000) |
||
525 | |||
526 | # Get the output and the warnings |
||
527 | with warnings.catch_warnings(record=True) as warn_rec: |
||
528 | user_lat, user_lon = self.apex_out.geo2apex(0, 0, 0) |
||
529 | |||
530 | assert np.isnan(user_lat) |
||
531 | assert np.isfinite(user_lon) |
||
532 | assert len(warn_rec) == 1 |
||
533 | assert issubclass(warn_rec[-1].category, UserWarning) |
||
534 | assert 'latitude set to NaN where' in str(warn_rec[-1].message) |
||
535 | return |
||
536 | |||
537 | @pytest.mark.parametrize("method_name", ["apex2qd", "qd2apex"]) |
||
538 | @pytest.mark.parametrize("delta_h", [1.0e-6, -1.0e-6]) |
||
539 | def test_quasidipole_apexheight_close(self, method_name, delta_h): |
||
540 | """Test quasi-dipole success with a height close to the reference.""" |
||
541 | qd_method = getattr(self.apex_out, method_name) |
||
542 | in_args = [0, 15, self.apex_out.refh + delta_h] |
||
543 | out_coords = qd_method(*in_args) |
||
544 | |||
545 | for i, out_val in enumerate(out_coords): |
||
546 | np.testing.assert_almost_equal(out_val, in_args[i], decimal=3) |
||
547 | return |
||
548 | |||
549 | @pytest.mark.parametrize("method_name, hinc, msg", |
||
550 | [("apex2qd", 1.0, "is > apex height"), |
||
551 | ("qd2apex", -1.0, "is < reference height")]) |
||
552 | def test_quasidipole_raises_apexheight(self, method_name, hinc, msg): |
||
553 | """Quasi-dipole raises ApexHeightError when height above reference.""" |
||
554 | qd_method = getattr(self.apex_out, method_name) |
||
555 | |||
556 | with pytest.raises(ApexHeightError) as aerr: |
||
557 | qd_method(0, 15, self.apex_out.refh + hinc) |
||
558 | |||
559 | assert str(aerr).find(msg) > 0 |
||
560 | return |
||
561 | |||
562 | |||
563 | class TestApexMLTMethods(): |
||
564 | """Test the Apex Magnetic Local Time (MLT) methods.""" |
||
565 | def setup(self): |
||
566 | """Initialize all tests.""" |
||
567 | self.apex_out = Apex(date=2000, refh=300) |
||
568 | self.in_time = dt.datetime(2000, 2, 3, 4, 5, 6) |
||
569 | |||
570 | def teardown(self): |
||
571 | """Clean up after each test.""" |
||
572 | del self.apex_out, self.in_time |
||
573 | |||
574 | @pytest.mark.parametrize("in_coord", ["geo", "apex", "qd"]) |
||
575 | def test_convert_to_mlt(self, in_coord): |
||
576 | """Test the conversions to MLT using Apex convert.""" |
||
577 | |||
578 | # Get the magnetic longitude from the appropriate method |
||
579 | if in_coord == "geo": |
||
580 | apex_method = getattr(self.apex_out, "{:s}2apex".format(in_coord)) |
||
581 | mlon = apex_method(60, 15, 100)[1] |
||
582 | else: |
||
583 | mlon = 15 |
||
584 | |||
585 | # Get the output MLT values |
||
586 | convert_mlt = self.apex_out.convert(60, 15, in_coord, 'mlt', |
||
587 | height=100, ssheight=2e5, |
||
588 | datetime=self.in_time)[1] |
||
589 | method_mlt = self.apex_out.mlon2mlt(mlon, self.in_time, ssheight=2e5) |
||
590 | |||
591 | # Test the outputs |
||
592 | np.testing.assert_allclose(convert_mlt, method_mlt) |
||
593 | return |
||
594 | |||
595 | @pytest.mark.parametrize("out_coord", ["geo", "apex", "qd"]) |
||
596 | def test_convert_mlt_to_lon(self, out_coord): |
||
597 | """Test the conversions from MLT using Apex convert.""" |
||
598 | # Get the output longitudes |
||
599 | convert_out = self.apex_out.convert(60, 15, 'mlt', out_coord, |
||
600 | height=100, ssheight=2e5, |
||
601 | datetime=self.in_time, |
||
602 | precision=1e-2) |
||
603 | mlon = self.apex_out.mlt2mlon(15, self.in_time, ssheight=2e5) |
||
604 | |||
605 | if out_coord == "geo": |
||
606 | method_out = self.apex_out.apex2geo(60, mlon, 100, |
||
607 | precision=1e-2)[:-1] |
||
608 | elif out_coord == "qd": |
||
609 | method_out = self.apex_out.apex2qd(60, mlon, 100) |
||
610 | else: |
||
611 | method_out = (60, mlon) |
||
612 | |||
613 | # Evaluate the outputs |
||
614 | np.testing.assert_allclose(convert_out, method_out) |
||
615 | return |
||
616 | |||
617 | def test_convert_geo2mlt_nodate(self): |
||
618 | """Test convert from geo to MLT raises ValueError with no datetime.""" |
||
619 | with pytest.raises(ValueError): |
||
620 | self.apex_out.convert(60, 15, 'geo', 'mlt') |
||
621 | return |
||
622 | |||
623 | @pytest.mark.parametrize("mlon_kwargs,test_mlt", |
||
624 | [({}, 23.019629923502603), |
||
625 | ({"ssheight": 100000}, 23.026712036132814)]) |
||
626 | def test_mlon2mlt_scalar_inputs(self, mlon_kwargs, test_mlt): |
||
627 | """Test mlon2mlt with scalar inputs.""" |
||
628 | mlt = self.apex_out.mlon2mlt(0, self.in_time, **mlon_kwargs) |
||
629 | |||
630 | np.testing.assert_allclose(mlt, test_mlt) |
||
631 | assert np.asarray(mlt).shape == () |
||
632 | return |
||
633 | |||
634 | @pytest.mark.parametrize("mlt_kwargs,test_mlon", |
||
635 | [({}, 14.705535888671875), |
||
636 | ({"ssheight": 100000}, 14.599319458007812)]) |
||
637 | def test_mlt2mlon_scalar_inputs(self, mlt_kwargs, test_mlon): |
||
638 | """Test mlt2mlon with scalar inputs.""" |
||
639 | mlon = self.apex_out.mlt2mlon(0, self.in_time, **mlt_kwargs) |
||
640 | |||
641 | np.testing.assert_allclose(mlon, test_mlon) |
||
642 | assert np.asarray(mlon).shape == () |
||
643 | return |
||
644 | |||
645 | @pytest.mark.parametrize("mlon,test_mlt", |
||
646 | [([0, 180], [23.019261, 11.019261]), |
||
647 | (np.array([0, 180]), [23.019261, 11.019261]), |
||
648 | ([[0, 180], [0, 180]], [[23.019261, 11.019261], |
||
649 | [23.019261, 11.019261]]), |
||
650 | (range(0, 361, 30), |
||
651 | [23.01963, 1.01963, 3.01963, 5.01963, 7.01963, |
||
652 | 9.01963, 11.01963, 13.01963, 15.01963, 17.01963, |
||
653 | 19.01963, 21.01963, 23.01963])]) |
||
654 | def test_mlon2mlt_array(self, mlon, test_mlt): |
||
655 | """Test mlon2mlt with array inputs.""" |
||
656 | mlt = self.apex_out.mlon2mlt(mlon, self.in_time) |
||
657 | |||
658 | assert mlt.shape == np.asarray(test_mlt).shape |
||
659 | np.testing.assert_allclose(mlt, test_mlt, rtol=1e-4) |
||
660 | return |
||
661 | |||
662 | @pytest.mark.parametrize("mlt,test_mlon", |
||
663 | [([0, 12], [14.705551, 194.705551]), |
||
664 | (np.array([0, 12]), [14.705551, 194.705551]), |
||
665 | ([[0, 12], [0, 12]], [[14.705551, 194.705551], |
||
666 | [14.705551, 194.705551]]), |
||
667 | (range(0, 25, 2), |
||
668 | [14.705551, 44.705551, 74.705551, 104.705551, |
||
669 | 134.705551, 164.705551, 194.705551, 224.705551, |
||
670 | 254.705551, 284.705551, 314.705551, 344.705551, |
||
671 | 14.705551])]) |
||
672 | def test_mlt2mlon_array(self, mlt, test_mlon): |
||
673 | """Test mlt2mlon with array inputs.""" |
||
674 | mlon = self.apex_out.mlt2mlon(mlt, self.in_time) |
||
675 | |||
676 | assert mlon.shape == np.asarray(test_mlon).shape |
||
677 | np.testing.assert_allclose(mlon, test_mlon, rtol=1e-4) |
||
678 | return |
||
679 | |||
680 | @pytest.mark.parametrize("method_name", ["mlon2mlt", "mlt2mlon"]) |
||
681 | def test_mlon2mlt_diffdates(self, method_name): |
||
682 | """Test that MLT varies with universal time.""" |
||
683 | apex_method = getattr(self.apex_out, method_name) |
||
684 | mlt1 = apex_method(0, self.in_time) |
||
685 | mlt2 = apex_method(0, self.in_time + dt.timedelta(hours=1)) |
||
686 | |||
687 | assert mlt1 != mlt2 |
||
688 | return |
||
689 | |||
690 | @pytest.mark.parametrize("mlt_offset", [1.0, 10.0]) |
||
691 | def test_mlon2mlt_offset(self, mlt_offset): |
||
692 | """Test the time wrapping logic for the MLT.""" |
||
693 | mlt1 = self.apex_out.mlon2mlt(0.0, self.in_time) |
||
694 | mlt2 = self.apex_out.mlon2mlt(-15.0 * mlt_offset, |
||
695 | self.in_time) + mlt_offset |
||
696 | |||
697 | np.testing.assert_allclose(mlt1, mlt2) |
||
698 | return |
||
699 | |||
700 | @pytest.mark.parametrize("mlon_offset", [15.0, 150.0]) |
||
701 | def test_mlt2mlon_offset(self, mlon_offset): |
||
702 | """Test the time wrapping logic for the magnetic longitude.""" |
||
703 | mlon1 = self.apex_out.mlt2mlon(0, self.in_time) |
||
704 | mlon2 = self.apex_out.mlt2mlon(mlon_offset / 15.0, |
||
705 | self.in_time) - mlon_offset |
||
706 | |||
707 | np.testing.assert_allclose(mlon1, mlon2) |
||
708 | return |
||
709 | |||
710 | @pytest.mark.parametrize("order", [["mlt", "mlon"], ["mlon", "mlt"]]) |
||
711 | @pytest.mark.parametrize("start_val", [0, 6, 12, 18, 22]) |
||
712 | def test_convert_and_return(self, order, start_val): |
||
713 | """Test the conversion to magnetic longitude or MLT and back again.""" |
||
714 | first_method = getattr(self.apex_out, "2".join(order)) |
||
715 | second_method = getattr(self.apex_out, "2".join([order[1], order[0]])) |
||
716 | |||
717 | middle_val = first_method(start_val, self.in_time) |
||
718 | end_val = second_method(middle_val, self.in_time) |
||
719 | |||
720 | np.testing.assert_allclose(start_val, end_val) |
||
721 | return |
||
722 | |||
723 | |||
724 | class TestApexMapMethods(): |
||
725 | """Test the Apex height mapping methods.""" |
||
726 | def setup(self): |
||
727 | """Initialize all tests.""" |
||
728 | self.apex_out = Apex(date=2000, refh=300) |
||
729 | |||
730 | def teardown(self): |
||
731 | """Clean up after each test.""" |
||
732 | del self.apex_out |
||
733 | |||
734 | @pytest.mark.parametrize("in_args,test_mapped", |
||
735 | [([60, 15, 100, 10000], |
||
736 | [31.841466903686523, 17.916635513305664, |
||
737 | 1.7075473124350538e-6]), |
||
738 | ([30, 170, 100, 500, False, 1e-2], |
||
739 | [25.727270126342773, 169.60546875, |
||
740 | 0.00017573432705830783]), |
||
741 | ([60, 15, 100, 10000, True], |
||
742 | [-25.424888610839844, 27.310426712036133, |
||
743 | 1.2074182222931995e-6]), |
||
744 | ([30, 170, 100, 500, True, 1e-2], |
||
745 | [-13.76642894744873, 164.24259948730469, |
||
746 | 0.00056820799363777041])]) |
||
747 | def test_map_to_height(self, in_args, test_mapped): |
||
748 | """Test the map_to_height function.""" |
||
749 | mapped = self.apex_out.map_to_height(*in_args) |
||
750 | np.testing.assert_allclose(mapped, test_mapped, atol=1e-6) |
||
751 | return |
||
752 | |||
753 | def test_map_to_height_same_height(self): |
||
754 | """Test the map_to_height function when mapping to same height.""" |
||
755 | mapped = self.apex_out.map_to_height(60, 15, 100, 100, conjugate=False, |
||
756 | precision=1e-10) |
||
757 | np.testing.assert_allclose(mapped, (60.0, 15.000003814697266, 0.0), |
||
758 | rtol=1e-5) |
||
759 | return |
||
760 | |||
761 | @pytest.mark.parametrize('ivec', range(0, 4)) |
||
762 | def test_map_to_height_array_location(self, ivec): |
||
763 | """Test map_to_height with array input.""" |
||
764 | # Set the base input and output values |
||
765 | in_args = [60, 15, 100, 100] |
||
766 | test_mapped = np.full(shape=(2, 3), |
||
767 | fill_value=[60, 15.00000381, 0.0]).transpose() |
||
768 | |||
769 | # Update inputs for one vectorized value |
||
770 | in_args[ivec] = [in_args[ivec], in_args[ivec]] |
||
771 | |||
772 | # Calculate and test function |
||
773 | mapped = self.apex_out.map_to_height(*in_args) |
||
774 | np.testing.assert_allclose(mapped, test_mapped, rtol=1e-5) |
||
775 | return |
||
776 | |||
777 | @pytest.mark.parametrize("method_name,in_args", |
||
778 | [("map_to_height", [0, 15, 100, 10000]), |
||
779 | ("map_E_to_height", |
||
780 | [0, 15, 100, 10000, [1, 2, 3]]), |
||
781 | ("map_V_to_height", |
||
782 | [0, 15, 100, 10000, [1, 2, 3]])]) |
||
783 | def test_mapping_height_raises_ApexHeightError(self, method_name, in_args): |
||
784 | """Test map_to_height raises ApexHeightError.""" |
||
785 | apex_method = getattr(self.apex_out, method_name) |
||
786 | |||
787 | with pytest.raises(ApexHeightError) as aerr: |
||
788 | apex_method(*in_args) |
||
789 | |||
790 | assert aerr.match("is > apex height") |
||
791 | return |
||
792 | |||
793 | @pytest.mark.parametrize("method_name", |
||
794 | ["map_E_to_height", "map_V_to_height"]) |
||
795 | @pytest.mark.parametrize("ev_input", [([1, 2, 3, 4, 5]), |
||
796 | ([[1, 2], [3, 4], [5, 6], [7, 8]])]) |
||
797 | def test_mapping_EV_bad_shape(self, method_name, ev_input): |
||
798 | """Test map_to_height raises ApexHeightError.""" |
||
799 | apex_method = getattr(self.apex_out, method_name) |
||
800 | in_args = [60, 15, 100, 500, ev_input] |
||
801 | with pytest.raises(ValueError) as verr: |
||
802 | apex_method(*in_args) |
||
803 | |||
804 | assert str(verr.value).find("must be (3, N) or (3,) ndarray") >= 0 |
||
805 | return |
||
806 | |||
807 | @pytest.mark.parametrize("in_args,test_mapped", |
||
808 | [([60, 15, 100, 500, [1, 2, 3]], |
||
809 | [0.71152183, 2.35624876, 0.57260784]), |
||
810 | ([60, 15, 100, 500, [2, 3, 4]], |
||
811 | [1.56028502, 3.43916636, 0.78235384]), |
||
812 | ([60, 15, 100, 1000, [1, 2, 3]], |
||
813 | [0.67796492, 2.08982134, 0.55860785]), |
||
814 | ([60, 15, 200, 500, [1, 2, 3]], |
||
815 | [0.72377397, 2.42737471, 0.59083726]), |
||
816 | ([60, 30, 100, 500, [1, 2, 3]], |
||
817 | [0.68626344, 2.37530133, 0.60060124]), |
||
818 | ([70, 15, 100, 500, [1, 2, 3]], |
||
819 | [0.72760378, 2.18082305, 0.29141979])]) |
||
820 | def test_map_E_to_height_scalar_location(self, in_args, test_mapped): |
||
821 | """Test mapping of E-field to a specified height.""" |
||
822 | mapped = self.apex_out.map_E_to_height(*in_args) |
||
823 | np.testing.assert_allclose(mapped, test_mapped, rtol=1e-5) |
||
824 | return |
||
825 | |||
826 | View Code Duplication | @pytest.mark.parametrize('ivec', range(0, 5)) |
|
827 | def test_map_E_to_height_array_location(self, ivec): |
||
828 | """Test mapping of E-field to a specified height with array input.""" |
||
829 | # Set the base input and output values |
||
830 | efield = np.array([[1, 2, 3]] * 2).transpose() |
||
831 | in_args = [60, 15, 100, 500, efield] |
||
832 | test_mapped = np.full(shape=(2, 3), |
||
833 | fill_value=[0.71152183, 2.35624876, |
||
834 | 0.57260784]).transpose() |
||
835 | |||
836 | # Update inputs for one vectorized value if this is a location input |
||
837 | if ivec < 4: |
||
838 | in_args[ivec] = [in_args[ivec], in_args[ivec]] |
||
839 | |||
840 | # Get the mapped output and test the results |
||
841 | mapped = self.apex_out.map_E_to_height(*in_args) |
||
842 | np.testing.assert_allclose(mapped, test_mapped, rtol=1e-5) |
||
843 | return |
||
844 | |||
845 | @pytest.mark.parametrize("in_args,test_mapped", |
||
846 | [([60, 15, 100, 500, [1, 2, 3]], |
||
847 | [0.81971957, 2.84512495, 0.69545001]), |
||
848 | ([60, 15, 100, 500, [2, 3, 4]], |
||
849 | [1.83027746, 4.14346436, 0.94764179]), |
||
850 | ([60, 15, 100, 1000, [1, 2, 3]], |
||
851 | [0.92457698, 3.14997661, 0.85135187]), |
||
852 | ([60, 15, 200, 500, [1, 2, 3]], |
||
853 | [0.80388262, 2.79321504, 0.68285158]), |
||
854 | ([60, 30, 100, 500, [1, 2, 3]], |
||
855 | [0.76141245, 2.87884673, 0.73655941]), |
||
856 | ([70, 15, 100, 500, [1, 2, 3]], |
||
857 | [0.84681866, 2.5925821, 0.34792655])]) |
||
858 | def test_map_V_to_height_scalar_location(self, in_args, test_mapped): |
||
859 | """Test mapping of velocity to a specified height.""" |
||
860 | mapped = self.apex_out.map_V_to_height(*in_args) |
||
861 | np.testing.assert_allclose(mapped, test_mapped, rtol=1e-5) |
||
862 | return |
||
863 | |||
864 | View Code Duplication | @pytest.mark.parametrize('ivec', range(0, 5)) |
|
865 | def test_map_V_to_height_array_location(self, ivec): |
||
866 | """Test mapping of velocity to a specified height with array input.""" |
||
867 | # Set the base input and output values |
||
868 | evel = np.array([[1, 2, 3]] * 2).transpose() |
||
869 | in_args = [60, 15, 100, 500, evel] |
||
870 | test_mapped = np.full(shape=(2, 3), |
||
871 | fill_value=[0.81971957, 2.84512495, |
||
872 | 0.69545001]).transpose() |
||
873 | |||
874 | # Update inputs for one vectorized value if this is a location input |
||
875 | if ivec < 4: |
||
876 | in_args[ivec] = [in_args[ivec], in_args[ivec]] |
||
877 | |||
878 | # Get the mapped output and test the results |
||
879 | mapped = self.apex_out.map_V_to_height(*in_args) |
||
880 | np.testing.assert_allclose(mapped, test_mapped, rtol=1e-5) |
||
881 | return |
||
882 | |||
883 | |||
884 | class TestApexBasevectorMethods(): |
||
885 | """Test the Apex height base vector methods.""" |
||
886 | def setup(self): |
||
887 | """Initialize all tests.""" |
||
888 | self.apex_out = Apex(date=2000, refh=300) |
||
889 | self.lat = 60 |
||
890 | self.lon = 15 |
||
891 | self.height = 100 |
||
892 | self.test_basevec = None |
||
893 | |||
894 | def teardown(self): |
||
895 | """Clean up after each test.""" |
||
896 | del self.apex_out, self.test_basevec, self.lat, self.lon, self.height |
||
897 | |||
898 | def get_comparison_results(self, bv_coord, coords, precision): |
||
899 | """Get the base vector results using the hidden function for comparison. |
||
900 | |||
901 | Parameters |
||
902 | ---------- |
||
903 | bv_coord : str |
||
904 | Basevector coordinate scheme, expects on of 'apex', 'qd', |
||
905 | or 'bvectors_apex' |
||
906 | coords : str |
||
907 | Expects one of 'geo', 'apex', or 'qd' |
||
908 | precision : float |
||
909 | Float specifiying precision |
||
910 | |||
911 | """ |
||
912 | if coords == "geo": |
||
913 | glat = self.lat |
||
914 | glon = self.lon |
||
915 | else: |
||
916 | apex_method = getattr(self.apex_out, "{:s}2geo".format(coords)) |
||
917 | glat, glon, _ = apex_method(self.lat, self.lon, self.height, |
||
918 | precision=precision) |
||
919 | |||
920 | if bv_coord == 'qd': |
||
921 | self.test_basevec = self.apex_out._basevec(glat, glon, self.height) |
||
922 | elif bv_coord == 'apex': |
||
923 | (_, _, _, _, f1, f2, _, d1, d2, d3, _, e1, e2, |
||
924 | e3) = self.apex_out._geo2apexall(glat, glon, 100) |
||
925 | self.test_basevec = (f1, f2, d1, d2, d3, e1, e2, e3) |
||
926 | else: |
||
927 | # These are set results that need to be updated with IGRF |
||
928 | if coords == "geo": |
||
929 | self.test_basevec = ( |
||
930 | np.array([4.42368795e-05, 4.42368795e-05]), |
||
931 | np.array([[0.01047826, 0.01047826], |
||
932 | [0.33089194, 0.33089194], |
||
933 | [-1.04941, -1.04941]]), |
||
934 | np.array([5.3564698e-05, 5.3564698e-05]), |
||
935 | np.array([[0.00865356, 0.00865356], |
||
936 | [0.27327004, 0.27327004], |
||
937 | [-0.8666646, -0.8666646]])) |
||
938 | elif coords == "apex": |
||
939 | self.test_basevec = ( |
||
940 | np.array([4.48672735e-05, 4.48672735e-05]), |
||
941 | np.array([[-0.12510721, -0.12510721], |
||
942 | [0.28945938, 0.28945938], |
||
943 | [-1.1505738, -1.1505738]]), |
||
944 | np.array([6.38577444e-05, 6.38577444e-05]), |
||
945 | np.array([[-0.08790194, -0.08790194], |
||
946 | [0.2033779, 0.2033779], |
||
947 | [-0.808408, -0.808408]])) |
||
948 | else: |
||
949 | self.test_basevec = ( |
||
950 | np.array([4.46348578e-05, 4.46348578e-05]), |
||
951 | np.array([[-0.12642345, -0.12642345], |
||
952 | [0.29695055, 0.29695055], |
||
953 | [-1.1517885, -1.1517885]]), |
||
954 | np.array([6.38626285e-05, 6.38626285e-05]), |
||
955 | np.array([[-0.08835986, -0.08835986], |
||
956 | [0.20754464, 0.20754464], |
||
957 | [-0.8050078, -0.8050078]])) |
||
958 | |||
959 | return |
||
960 | |||
961 | @pytest.mark.parametrize("bv_coord", ["qd", "apex"]) |
||
962 | @pytest.mark.parametrize("coords,precision", |
||
963 | [("geo", 1e-10), ("apex", 1.0e-2), ("qd", 1.0e-2)]) |
||
964 | def test_basevectors_scalar(self, bv_coord, coords, precision): |
||
965 | """Test the base vector calculations with scalars.""" |
||
966 | # Get the base vectors |
||
967 | base_method = getattr(self.apex_out, |
||
968 | "basevectors_{:s}".format(bv_coord)) |
||
969 | basevec = base_method(self.lat, self.lon, self.height, coords=coords, |
||
970 | precision=precision) |
||
971 | self.get_comparison_results(bv_coord, coords, precision) |
||
972 | if bv_coord == "apex": |
||
973 | basevec = list(basevec) |
||
974 | for i in range(4): |
||
975 | # Not able to compare indices 2, 3, 4, and 5 |
||
976 | basevec.pop(2) |
||
977 | |||
978 | # Test the results |
||
979 | for i, vec in enumerate(basevec): |
||
980 | np.testing.assert_allclose(vec, self.test_basevec[i]) |
||
981 | return |
||
982 | |||
983 | @pytest.mark.parametrize("bv_coord", ["qd", "apex"]) |
||
984 | def test_basevectors_scalar_shape(self, bv_coord): |
||
985 | """Test the shape of the scalar output.""" |
||
986 | base_method = getattr(self.apex_out, |
||
987 | "basevectors_{:s}".format(bv_coord)) |
||
988 | basevec = base_method(self.lat, self.lon, self.height) |
||
989 | |||
990 | for i, vec in enumerate(basevec): |
||
991 | if i < 2: |
||
992 | assert vec.shape == (2,) |
||
993 | else: |
||
994 | assert vec.shape == (3,) |
||
995 | return |
||
996 | |||
997 | @pytest.mark.parametrize("bv_coord", ["qd", "apex"]) |
||
998 | @pytest.mark.parametrize("ivec", range(3)) |
||
999 | def test_basevectors_array(self, bv_coord, ivec): |
||
1000 | """Test the output shape for array inputs.""" |
||
1001 | # Define the input arguments |
||
1002 | in_args = [self.lat, self.lon, self.height] |
||
1003 | in_args[ivec] = [in_args[ivec] for i in range(4)] |
||
1004 | |||
1005 | # Get the basevectors |
||
1006 | base_method = getattr(self.apex_out, |
||
1007 | "basevectors_{:s}".format(bv_coord)) |
||
1008 | basevec = base_method(*in_args, coords='geo', precision=1e-10) |
||
1009 | self.get_comparison_results(bv_coord, "geo", 1e-10) |
||
1010 | if bv_coord == "apex": |
||
1011 | basevec = list(basevec) |
||
1012 | for i in range(4): |
||
1013 | # Not able to compare indices 2, 3, 4, and 5 |
||
1014 | basevec.pop(2) |
||
1015 | |||
1016 | # Evaluate the shape and the values |
||
1017 | for i, vec in enumerate(basevec): |
||
1018 | idim = 2 if i < 2 else 3 |
||
1019 | assert vec.shape == (idim, 4) |
||
1020 | assert np.all(self.test_basevec[i][0] == vec[0]) |
||
1021 | assert np.all(self.test_basevec[i][1] == vec[1]) |
||
1022 | return |
||
1023 | |||
1024 | @pytest.mark.parametrize("coords", ["geo", "apex", "qd"]) |
||
1025 | def test_bvectors_apex(self, coords): |
||
1026 | """Test the bvectors_apex method.""" |
||
1027 | in_args = [[self.lat, self.lat], [self.lon, self.lon], |
||
1028 | [self.height, self.height]] |
||
1029 | self.get_comparison_results("bvectors_apex", coords, 1e-10) |
||
1030 | |||
1031 | basevec = self.apex_out.bvectors_apex(*in_args, coords=coords, |
||
1032 | precision=1e-10) |
||
1033 | for i, vec in enumerate(basevec): |
||
1034 | np.testing.assert_array_almost_equal(vec, self.test_basevec[i], |
||
1035 | decimal=5) |
||
1036 | return |
||
1037 | |||
1038 | def test_basevectors_apex_extra_values(self): |
||
1039 | """Test specific values in the apex base vector output.""" |
||
1040 | # Set the testing arrays |
||
1041 | self.test_basevec = [np.array([0.092637, -0.245951, 0.938848]), |
||
1042 | np.array([0.939012, 0.073416, -0.07342]), |
||
1043 | np.array([0.055389, 1.004155, 0.257594]), |
||
1044 | np.array([0, 0, 1.065135])] |
||
1045 | |||
1046 | # Get the desired output |
||
1047 | basevec = self.apex_out.basevectors_apex(0, 15, 100, coords='geo') |
||
1048 | |||
1049 | # Test the values not covered by `test_basevectors_scalar` |
||
1050 | for itest, ibase in enumerate(np.arange(2, 6, 1)): |
||
1051 | np.testing.assert_allclose(basevec[ibase], |
||
1052 | self.test_basevec[itest], rtol=1e-4) |
||
1053 | return |
||
1054 | |||
1055 | @pytest.mark.parametrize("lat", range(0, 90, 10)) |
||
1056 | @pytest.mark.parametrize("lon", range(0, 360, 15)) |
||
1057 | def test_basevectors_apex_delta(self, lat, lon): |
||
1058 | """Test that vectors are calculated correctly.""" |
||
1059 | # Get the apex base vectors and sort them for easy testing |
||
1060 | (f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, |
||
1061 | e3) = self.apex_out.basevectors_apex(lat, lon, 500) |
||
1062 | fvec = [np.append(f1, 0), np.append(f2, 0), f3] |
||
1063 | gvec = [g1, g2, g3] |
||
1064 | dvec = [d1, d2, d3] |
||
1065 | evec = [e1, e2, e3] |
||
1066 | |||
1067 | for idelta, jdelta in [(i, j) for i in range(3) for j in range(3)]: |
||
1068 | delta = 1 if idelta == jdelta else 0 |
||
1069 | np.testing.assert_allclose(np.sum(fvec[idelta] * gvec[jdelta]), |
||
1070 | delta, rtol=0, atol=1e-5) |
||
1071 | np.testing.assert_allclose(np.sum(dvec[idelta] * evec[jdelta]), |
||
1072 | delta, rtol=0, atol=1e-5) |
||
1073 | return |
||
1074 | |||
1075 | def test_basevectors_apex_invalid_scalar(self): |
||
1076 | """Test warning and fill values for base vectors with bad inputs.""" |
||
1077 | self.apex_out = Apex(date=2000, refh=10000) |
||
1078 | invalid = np.full(shape=(3,), fill_value=np.nan) |
||
1079 | |||
1080 | # Get the output and the warnings |
||
1081 | with warnings.catch_warnings(record=True) as warn_rec: |
||
1082 | basevec = self.apex_out.basevectors_apex(0, 0, 0) |
||
1083 | |||
1084 | for i, bvec in enumerate(basevec): |
||
1085 | if i < 2: |
||
1086 | assert not np.allclose(bvec, invalid[:2]) |
||
1087 | else: |
||
1088 | np.testing.assert_allclose(bvec, invalid) |
||
1089 | |||
1090 | assert issubclass(warn_rec[-1].category, UserWarning) |
||
1091 | assert 'set to NaN where' in str(warn_rec[-1].message) |
||
1092 | return |
||
1093 | |||
1094 | |||
1095 | class TestApexGetMethods(): |
||
1096 | """Test the Apex `get` methods.""" |
||
1097 | def setup(self): |
||
1098 | """Initialize all tests.""" |
||
1099 | self.apex_out = Apex(date=2000, refh=300) |
||
1100 | |||
1101 | def teardown(self): |
||
1102 | """Clean up after each test.""" |
||
1103 | del self.apex_out |
||
1104 | |||
1105 | @pytest.mark.parametrize("alat, aheight", [(10, 507.409702543805), |
||
1106 | (60, 20313.026999999987)]) |
||
1107 | def test_get_apex(self, alat, aheight): |
||
1108 | """Test the apex height retrieval results.""" |
||
1109 | alt = self.apex_out.get_apex(alat) |
||
1110 | np.testing.assert_allclose(alt, aheight) |
||
1111 | return |
||
1112 | |||
1113 | @pytest.mark.parametrize("glat,glon,height,test_bmag", |
||
1114 | [([80], [100], [300], 5.100682377815247e-05), |
||
1115 | (range(50, 90, 8), range(0, 360, 80), [300] * 5, |
||
1116 | np.array([4.18657154e-05, 5.11118114e-05, |
||
1117 | 4.91969854e-05, 5.10519207e-05, |
||
1118 | 4.90054816e-05])), |
||
1119 | (90.0, 0, 1000, 3.7834718823432923e-05)]) |
||
1120 | def test_get_babs(self, glat, glon, height, test_bmag): |
||
1121 | """Test the method to get the magnitude of the magnetic field.""" |
||
1122 | bmag = self.apex_out.get_babs(glat, glon, height) |
||
1123 | np.testing.assert_allclose(bmag, test_bmag, rtol=0, atol=1e-5) |
||
1124 | return |
||
1125 | |||
1126 | @pytest.mark.parametrize("bad_lat", [(91), (-91)]) |
||
1127 | def test_get_with_invalid_lat(self, bad_lat): |
||
1128 | """Test get methods raise ValueError for invalid latitudes.""" |
||
1129 | |||
1130 | with pytest.raises(ValueError): |
||
1131 | self.apex_out.get_apex(bad_lat) |
||
1132 | return |
||
1133 | |||
1134 | @pytest.mark.parametrize("bound_lat", [(90), (-90)]) |
||
1135 | def test_get_at_lat_boundary(self, bound_lat): |
||
1136 | """Test get methods at the latitude boundary, with allowed excess.""" |
||
1137 | # Get a latitude just beyond the limit |
||
1138 | excess_lat = np.sign(bound_lat) * (abs(bound_lat) + 1.0e-5) |
||
1139 | |||
1140 | # Get the two outputs, slight tolerance outside of boundary allowed |
||
1141 | bound_out = self.apex_out.get_apex(bound_lat) |
||
1142 | excess_out = self.apex_out.get_apex(excess_lat) |
||
1143 | |||
1144 | # Test the outputs |
||
1145 | np.testing.assert_allclose(excess_out, bound_out, rtol=0, atol=1e-8) |
||
1146 | return |
||
1147 |