1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
""" |
3
|
|
|
Classes that make up the core of apexpy. |
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
import datetime as dt |
7
|
|
|
import numpy as np |
8
|
|
|
import os |
9
|
|
|
import warnings |
10
|
|
|
|
11
|
|
|
from apexpy import helpers |
12
|
|
|
|
13
|
|
|
# Below try..catch required for autodoc to work on readthedocs |
14
|
|
|
try: |
15
|
|
|
from apexpy import fortranapex as fa |
16
|
|
|
except ImportError: |
17
|
|
|
warnings.warn("".join(["fortranapex module could not be imported, so ", |
18
|
|
|
"apexpy probably won't work. Make sure you have ", |
19
|
|
|
"a gfortran compiler."])) |
20
|
|
|
|
21
|
|
|
# Make sure invalid warnings are always shown |
22
|
|
|
warnings.filterwarnings('always', message='.*set to NaN where*', |
23
|
|
|
module='apexpy.apex') |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
class ApexHeightError(ValueError): |
27
|
|
|
"""Specialized ValueError definition, to be used when apex height is wrong. |
28
|
|
|
""" |
29
|
|
|
pass |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class Apex(object): |
33
|
|
|
"""Calculates coordinate conversions, field-line mapping, and base vectors. |
34
|
|
|
|
35
|
|
|
Parameters |
36
|
|
|
---------- |
37
|
|
|
date : NoneType, float, :class:`dt.date`, or :class:`dt.datetime`, optional |
38
|
|
|
Determines which IGRF coefficients are used in conversions. Uses |
39
|
|
|
current date as default. If float, use decimal year. If None, uses |
40
|
|
|
current UTC. (default=None) |
41
|
|
|
refh : float, optional |
42
|
|
|
Reference height in km for apex coordinates, the field lines are mapped |
43
|
|
|
to this height. (default=0) |
44
|
|
|
datafile : str or NoneType, optional |
45
|
|
|
Path to custom coefficient file, if None uses `apexsh.dat` file |
46
|
|
|
(default=None) |
47
|
|
|
fortranlib : str or NoneType, optional |
48
|
|
|
Path to Fortran Apex CPython library, if None uses linked library file |
49
|
|
|
(default=None) |
50
|
|
|
|
51
|
|
|
Attributes |
52
|
|
|
---------- |
53
|
|
|
year : float |
54
|
|
|
Decimal year used for the IGRF model |
55
|
|
|
RE : float |
56
|
|
|
Earth radius in km, defaults to mean Earth radius |
57
|
|
|
refh : float |
58
|
|
|
Reference height in km for apex coordinates |
59
|
|
|
datafile : str |
60
|
|
|
Path to coefficient file |
61
|
|
|
fortranlib : str |
62
|
|
|
Path to Fortran Apex CPython library |
63
|
|
|
igrf_fn : str |
64
|
|
|
IGRF coefficient filename |
65
|
|
|
|
66
|
|
|
Notes |
67
|
|
|
----- |
68
|
|
|
The calculations use IGRF-13 with coefficients from 1900 to 2025 [1]_. |
69
|
|
|
|
70
|
|
|
The geodetic reference ellipsoid is WGS84. |
71
|
|
|
|
72
|
|
|
References |
73
|
|
|
---------- |
74
|
|
|
|
75
|
|
|
.. [1] Thébault, E. et al. (2015), International Geomagnetic Reference |
76
|
|
|
Field: the 12th generation, Earth, Planets and Space, 67(1), 79, |
77
|
|
|
:doi:`10.1186/s40623-015-0228-9`. |
78
|
|
|
|
79
|
|
|
""" |
80
|
|
|
|
81
|
|
|
# ------------------------ |
82
|
|
|
# Define the magic methods |
83
|
|
|
|
84
|
|
|
def __init__(self, date=None, refh=0, datafile=None, fortranlib=None): |
85
|
|
|
|
86
|
|
|
if datafile is None: |
87
|
|
|
datafile = os.path.join(os.path.dirname(__file__), 'apexsh.dat') |
88
|
|
|
|
89
|
|
|
if fortranlib is None: |
90
|
|
|
fortranlib = fa.__file__ |
91
|
|
|
|
92
|
|
|
self.RE = 6371.009 # Mean Earth radius in km |
93
|
|
|
self.set_refh(refh) # Reference height in km |
94
|
|
|
|
95
|
|
|
if date is None: |
96
|
|
|
self.year = helpers.toYearFraction(dt.datetime.utcnow()) |
97
|
|
|
else: |
98
|
|
|
try: |
99
|
|
|
# Convert date/datetime object to decimal year |
100
|
|
|
self.year = helpers.toYearFraction(date) |
101
|
|
|
except AttributeError: |
102
|
|
|
# Failed while finding datetime attribute, so |
103
|
|
|
# date is probably an int or float; use directly |
104
|
|
|
self.year = date |
105
|
|
|
|
106
|
|
|
if not os.path.isfile(datafile): |
107
|
|
|
raise IOError('Data file does not exist: {}'.format(datafile)) |
108
|
|
|
|
109
|
|
|
if not os.path.isfile(fortranlib): |
110
|
|
|
raise IOError('Fortran library does not exist: {}'.format( |
111
|
|
|
fortranlib)) |
112
|
|
|
|
113
|
|
|
self.datafile = datafile |
114
|
|
|
self.fortranlib = fortranlib |
115
|
|
|
|
116
|
|
|
# Set the IGRF coefficient text file name |
117
|
|
|
self.igrf_fn = os.path.join(os.path.dirname(__file__), |
118
|
|
|
'igrf13coeffs.txt') |
119
|
|
|
if not os.path.exists(self.igrf_fn): |
120
|
|
|
raise OSError("File {} does not exist".format(self.igrf_fn)) |
121
|
|
|
|
122
|
|
|
# Update the Fortran epoch using the year defined above |
123
|
|
|
self.set_epoch(self.year) |
124
|
|
|
|
125
|
|
|
# Vectorize the fortran functions |
126
|
|
|
self._geo2qd = np.frompyfunc( |
127
|
|
|
lambda glat, glon, height: fa.apxg2q(glat, (glon + 180) % 360 - 180, |
128
|
|
|
height, 0)[:2], 3, 2) |
129
|
|
|
self._geo2apex = np.frompyfunc( |
130
|
|
|
lambda glat, glon, height: fa.apxg2all(glat, (glon + 180) % 360 |
131
|
|
|
- 180, height, self.refh, |
132
|
|
|
0)[2:4], 3, 2) |
133
|
|
|
self._geo2apexall = np.frompyfunc( |
134
|
|
|
lambda glat, glon, height: fa.apxg2all(glat, (glon + 180) % 360 |
135
|
|
|
- 180, height, self.refh, |
136
|
|
|
1), 3, 14) |
137
|
|
|
self._qd2geo = np.frompyfunc( |
138
|
|
|
lambda qlat, qlon, height, precision: fa.apxq2g(qlat, (qlon + 180) |
139
|
|
|
% 360 - 180, height, |
140
|
|
|
precision), 4, 3) |
141
|
|
|
self._basevec = np.frompyfunc( |
142
|
|
|
lambda glat, glon, height: fa.apxg2q(glat, (glon + 180) % 360 - 180, |
143
|
|
|
height, 1)[2:4], 3, 2) |
144
|
|
|
|
145
|
|
|
# Vectorize other nonvectorized functions |
146
|
|
|
self._apex2qd = np.frompyfunc(self._apex2qd_nonvectorized, 3, 2) |
147
|
|
|
self._qd2apex = np.frompyfunc(self._qd2apex_nonvectorized, 3, 2) |
148
|
|
|
self._get_babs = np.frompyfunc(self._get_babs_nonvectorized, 3, 1) |
149
|
|
|
|
150
|
|
|
return |
151
|
|
|
|
152
|
|
|
def __repr__(self): |
153
|
|
|
"""Produce an evaluatable representation of the Apex class.""" |
154
|
|
|
rstr = "".join(["apexpy.Apex(date=", self.year.__repr__(), ", refh=", |
155
|
|
|
self.refh.__repr__(), ", datafile=", |
156
|
|
|
self.datafile.__repr__(), ", fortranlib=", |
157
|
|
|
self.fortranlib.__repr__(), ")"]) |
158
|
|
|
|
159
|
|
|
return rstr |
160
|
|
|
|
161
|
|
|
def __str__(self): |
162
|
|
|
"""Produce a user-friendly representation of the Apex class.""" |
163
|
|
|
|
164
|
|
|
out_str = '\n'.join(["Apex class conversions performed with", |
165
|
|
|
"-------------------------------------", |
166
|
|
|
"Decimal year: {:.8f}".format(self.year), |
167
|
|
|
"Reference height: {:.3f} km".format(self.refh), |
168
|
|
|
"Earth radius: {:.3f} km".format(self.RE), '', |
169
|
|
|
"Coefficient file: '{:s}'".format(self.datafile), |
170
|
|
|
"Cython Fortran library: '{:s}'".format( |
171
|
|
|
self.fortranlib)]) |
172
|
|
|
return out_str |
173
|
|
|
|
174
|
|
|
def __eq__(self, comp_obj): |
175
|
|
|
"""Performs equivalency evaluation. |
176
|
|
|
|
177
|
|
|
Parameters |
178
|
|
|
---------- |
179
|
|
|
comp_obj |
180
|
|
|
Object of any time to be compared to the class object |
181
|
|
|
|
182
|
|
|
Returns |
183
|
|
|
------- |
184
|
|
|
bool or NotImplemented |
185
|
|
|
True if self and comp_obj are identical, False if they are not, |
186
|
|
|
and NotImplemented if the classes are not the same |
187
|
|
|
|
188
|
|
|
""" |
189
|
|
|
|
190
|
|
|
if isinstance(comp_obj, self.__class__): |
191
|
|
|
# Objects are the same if all the attributes are the same |
192
|
|
|
for apex_attr in ['year', 'refh', 'RE', 'datafile', 'fortranlib', |
193
|
|
|
'igrf_fn']: |
194
|
|
|
bad_attr = False |
195
|
|
|
if hasattr(self, apex_attr): |
196
|
|
|
aval = getattr(self, apex_attr) |
197
|
|
|
|
198
|
|
|
if hasattr(comp_obj, apex_attr): |
199
|
|
|
cval = getattr(comp_obj, apex_attr) |
200
|
|
|
|
201
|
|
|
if cval != aval: |
202
|
|
|
bad_attr = True |
203
|
|
|
else: |
204
|
|
|
bad_attr = True |
205
|
|
|
else: |
206
|
|
|
bad_attr = True |
207
|
|
|
|
208
|
|
|
if bad_attr: |
209
|
|
|
return False |
210
|
|
|
|
211
|
|
|
# If we arrive here, all expected attributes exist in both classes |
212
|
|
|
# and have the same values |
213
|
|
|
return True |
214
|
|
|
|
215
|
|
|
return NotImplemented |
216
|
|
|
|
217
|
|
|
# ------------------------- |
218
|
|
|
# Define the hidden methods |
219
|
|
|
|
220
|
|
View Code Duplication |
def _apex2qd_nonvectorized(self, alat, alon, height): |
|
|
|
|
221
|
|
|
"""Convert from apex to quasi-dipole (not-vectorised) |
222
|
|
|
|
223
|
|
|
Parameters |
224
|
|
|
----------- |
225
|
|
|
alat : (float) |
226
|
|
|
Apex latitude in degrees |
227
|
|
|
alon : (float) |
228
|
|
|
Apex longitude in degrees |
229
|
|
|
height : (float) |
230
|
|
|
Height in km |
231
|
|
|
|
232
|
|
|
Returns |
233
|
|
|
--------- |
234
|
|
|
qlat : (float) |
235
|
|
|
Quasi-dipole latitude in degrees |
236
|
|
|
qlon : (float) |
237
|
|
|
Quasi-diplole longitude in degrees |
238
|
|
|
|
239
|
|
|
""" |
240
|
|
|
# Evaluate the latitude |
241
|
|
|
alat = helpers.checklat(alat, name='alat') |
242
|
|
|
|
243
|
|
|
# Convert modified apex to quasi-dipole, longitude is the same |
244
|
|
|
qlon = alon |
245
|
|
|
|
246
|
|
|
# Get the apex height |
247
|
|
|
h_apex = self.get_apex(alat) |
248
|
|
|
|
249
|
|
|
if h_apex < height: |
250
|
|
|
if np.isclose(h_apex, height, rtol=0, atol=1e-5): |
251
|
|
|
# Allow for values that are close |
252
|
|
|
h_apex = height |
253
|
|
|
else: |
254
|
|
|
estr = ''.join(['height {:.3g} is > '.format(np.max(height)), |
255
|
|
|
'apex height {:.3g} for alat {:.3g}'.format( |
256
|
|
|
h_apex, alat)]) |
257
|
|
|
raise ApexHeightError(estr) |
258
|
|
|
|
259
|
|
|
# Convert the latitude |
260
|
|
|
salat = np.sign(alat) if alat != 0 else 1 |
261
|
|
|
qlat = salat * np.degrees(np.arccos(np.sqrt((self.RE + height) / |
262
|
|
|
(self.RE + h_apex)))) |
263
|
|
|
|
264
|
|
|
return qlat, qlon |
265
|
|
|
|
266
|
|
View Code Duplication |
def _qd2apex_nonvectorized(self, qlat, qlon, height): |
|
|
|
|
267
|
|
|
"""Converts quasi-dipole to modified apex coordinates. |
268
|
|
|
|
269
|
|
|
Parameters |
270
|
|
|
---------- |
271
|
|
|
qlat : float |
272
|
|
|
Quasi-dipole latitude |
273
|
|
|
qlon : float |
274
|
|
|
Quasi-dipole longitude |
275
|
|
|
height : float |
276
|
|
|
Altitude in km |
277
|
|
|
|
278
|
|
|
Returns |
279
|
|
|
------- |
280
|
|
|
alat : float |
281
|
|
|
Modified apex latitude |
282
|
|
|
alon : float |
283
|
|
|
Modified apex longitude |
284
|
|
|
|
285
|
|
|
Raises |
286
|
|
|
------ |
287
|
|
|
ApexHeightError |
288
|
|
|
if apex height < reference height |
289
|
|
|
|
290
|
|
|
""" |
291
|
|
|
# Evaluate the latitude |
292
|
|
|
qlat = helpers.checklat(qlat, name='qlat') |
293
|
|
|
|
294
|
|
|
# Get the longitude and apex height |
295
|
|
|
alon = qlon |
296
|
|
|
h_apex = self.get_apex(qlat, height) |
297
|
|
|
|
298
|
|
|
if h_apex < self.refh: |
299
|
|
|
if np.isclose(h_apex, self.refh, rtol=0, atol=1e-5): |
300
|
|
|
# Allow for values that are close |
301
|
|
|
h_apex = self.refh |
302
|
|
|
else: |
303
|
|
|
estr = ''.join(['apex height ({:.3g}) is < '.format(h_apex), |
304
|
|
|
'reference height ({:.3g})'.format(self.refh), |
305
|
|
|
' for qlat {:.3g}'.format(qlat)]) |
306
|
|
|
raise ApexHeightError(estr) |
307
|
|
|
|
308
|
|
|
# Convert the latitude |
309
|
|
|
sqlat = np.sign(qlat) if qlat != 0 else 1 |
310
|
|
|
alat = sqlat * np.degrees(np.arccos(np.sqrt((self.RE + self.refh) / |
311
|
|
|
(self.RE + h_apex)))) |
312
|
|
|
|
313
|
|
|
return alat, alon |
314
|
|
|
|
315
|
|
|
def _map_EV_to_height(self, alat, alon, height, newheight, data, ev_flag): |
316
|
|
|
"""Maps electric field related values to a desired height |
317
|
|
|
|
318
|
|
|
Parameters |
319
|
|
|
---------- |
320
|
|
|
alat : array-like |
321
|
|
|
Apex latitude in degrees. |
322
|
|
|
alon : array-like |
323
|
|
|
Apex longitude in degrees. |
324
|
|
|
height : array-like |
325
|
|
|
Current altitude in km. |
326
|
|
|
new_height : array-like |
327
|
|
|
Desired altitude to which EV values will be mapped in km. |
328
|
|
|
data : array-like |
329
|
|
|
3D value(s) for the electric field or electric drift |
330
|
|
|
ev_flag : str |
331
|
|
|
Specify if value is an electric field ('E') or electric drift ('V') |
332
|
|
|
|
333
|
|
|
Returns |
334
|
|
|
------- |
335
|
|
|
data_mapped : array-like |
336
|
|
|
Data mapped along the magnetic field from the old height to the |
337
|
|
|
new height. |
338
|
|
|
|
339
|
|
|
Raises |
340
|
|
|
------ |
341
|
|
|
ValueError |
342
|
|
|
If an unknown `ev_flag` or badly shaped data input is supplied. |
343
|
|
|
|
344
|
|
|
""" |
345
|
|
|
# Ensure the E-V flag is correct |
346
|
|
|
ev_flag = ev_flag.upper() |
347
|
|
|
if ev_flag not in ['E', 'V']: |
348
|
|
|
raise ValueError('unknown electric field/drift flag') |
349
|
|
|
|
350
|
|
|
# Make sure data is array of correct shape |
351
|
|
|
if(not (np.ndim(data) == 1 and np.size(data) == 3) |
352
|
|
|
and not (np.ndim(data) == 2 and np.shape(data)[0] == 3)): |
353
|
|
|
# Raise ValueError because if passing e.g. a (6,) ndarray the |
354
|
|
|
# reshape below will work even though the input is invalid |
355
|
|
|
raise ValueError('{:} must be (3, N) or (3,) ndarray'.format( |
356
|
|
|
ev_flag)) |
357
|
|
|
|
358
|
|
|
data = np.reshape(data, (3, np.size(data) // 3)) |
359
|
|
|
|
360
|
|
|
# Get the necessary base vectors at the current and new height |
361
|
|
|
v1 = list() |
362
|
|
|
v2 = list() |
363
|
|
|
for i, alt in enumerate([height, newheight]): |
364
|
|
|
_, _, _, _, _, _, d1, d2, _, e1, e2, _ = self.basevectors_apex( |
365
|
|
|
alat, alon, alt, coords='apex') |
366
|
|
|
|
367
|
|
|
if ev_flag == 'E' and i == 0 or ev_flag == 'V' and i == 1: |
368
|
|
|
v1.append(e1) |
369
|
|
|
v2.append(e2) |
370
|
|
|
else: |
371
|
|
|
v1.append(d1) |
372
|
|
|
v2.append(d2) |
373
|
|
|
|
374
|
|
|
# Make sure v1 and v2 have shape (3, N) |
375
|
|
|
v1[-1] = np.reshape(v1[-1], (3, v1[-1].size // 3)) |
376
|
|
|
v2[-1] = np.reshape(v2[-1], (3, v2[-1].size // 3)) |
377
|
|
|
|
378
|
|
|
# Take the dot product between the data value and each base vector |
379
|
|
|
# at the current height |
380
|
|
|
data1 = np.sum(data * v1[0], axis=0) |
381
|
|
|
data2 = np.sum(data * v2[0], axis=0) |
382
|
|
|
print("BI", data, v1[0], np.sum(data * v1[0], axis=0), data1) |
383
|
|
|
|
384
|
|
|
# Map the data to the new height, removing any axes of length 1 |
385
|
|
|
# after the calculation |
386
|
|
|
data_mapped = np.squeeze(data1[np.newaxis, :] * v1[1] |
387
|
|
|
+ data2[np.newaxis, :] * v2[1]) |
388
|
|
|
|
389
|
|
|
return data_mapped |
390
|
|
|
|
391
|
|
|
def _get_babs_nonvectorized(self, glat, glon, height): |
392
|
|
|
"""Get the absolute value of the B-field in Tesla |
393
|
|
|
|
394
|
|
|
Parameters |
395
|
|
|
---------- |
396
|
|
|
glat : float |
397
|
|
|
Geodetic latitude in degrees |
398
|
|
|
glon : float |
399
|
|
|
Geodetic longitude in degrees |
400
|
|
|
height : float |
401
|
|
|
Altitude in km |
402
|
|
|
|
403
|
|
|
Returns |
404
|
|
|
------- |
405
|
|
|
babs : float |
406
|
|
|
Absolute value of the magnetic field in Tesla |
407
|
|
|
|
408
|
|
|
""" |
409
|
|
|
# Evaluate the latitude |
410
|
|
|
glat = helpers.checklat(glat, name='qlat') |
411
|
|
|
|
412
|
|
|
# Get the magnetic field output: North, East, Down, Absolute value |
413
|
|
|
bout = fa.feldg(1, glat, glon, height) |
414
|
|
|
|
415
|
|
|
# Convert the absolute value from Gauss to Tesla |
416
|
|
|
babs = bout[-1] / 10000.0 |
417
|
|
|
|
418
|
|
|
return babs |
419
|
|
|
|
420
|
|
|
# ----------------------- |
421
|
|
|
# Define the user methods |
422
|
|
|
|
423
|
|
|
def convert(self, lat, lon, source, dest, height=0, datetime=None, |
424
|
|
|
precision=1e-10, ssheight=50 * 6371): |
425
|
|
|
"""Converts between geodetic, modified apex, quasi-dipole and MLT. |
426
|
|
|
|
427
|
|
|
Parameters |
428
|
|
|
---------- |
429
|
|
|
lat : array_like |
430
|
|
|
Latitude in degrees |
431
|
|
|
lon : array_like |
432
|
|
|
Longitude in degrees or MLT in hours |
433
|
|
|
source : str |
434
|
|
|
Input coordinate system, accepts 'geo', 'apex', 'qd', or 'mlt' |
435
|
|
|
dest : str |
436
|
|
|
Output coordinate system, accepts 'geo', 'apex', 'qd', or 'mlt' |
437
|
|
|
height : array_like, optional |
438
|
|
|
Altitude in km |
439
|
|
|
datetime : :class:`datetime.datetime` |
440
|
|
|
Date and time for MLT conversions (required for MLT conversions) |
441
|
|
|
precision : float, optional |
442
|
|
|
Precision of output (degrees) when converting to geo. A negative |
443
|
|
|
value of this argument produces a low-precision calculation of |
444
|
|
|
geodetic lat/lon based only on their spherical harmonic |
445
|
|
|
representation. |
446
|
|
|
A positive value causes the underlying Fortran routine to iterate |
447
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
448
|
|
|
the input QD lat/lon to within the specified precision (all |
449
|
|
|
coordinates being converted to geo are converted to QD first and |
450
|
|
|
passed through APXG2Q). |
451
|
|
|
ssheight : float, optional |
452
|
|
|
Altitude in km to use for converting the subsolar point from |
453
|
|
|
geographic to magnetic coordinates. A high altitude is used |
454
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
455
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
456
|
|
|
|
457
|
|
|
Returns |
458
|
|
|
------- |
459
|
|
|
lat : ndarray or float |
460
|
|
|
Converted latitude (if converting to MLT, output latitude is apex) |
461
|
|
|
lon : ndarray or float |
462
|
|
|
Converted longitude or MLT |
463
|
|
|
|
464
|
|
|
Raises |
465
|
|
|
------ |
466
|
|
|
ValueError |
467
|
|
|
For unknown source or destination coordinate system or a missing |
468
|
|
|
or badly formed latitude or datetime input |
469
|
|
|
|
470
|
|
|
""" |
471
|
|
|
# Test the input values |
472
|
|
|
source = source.lower() |
473
|
|
|
dest = dest.lower() |
474
|
|
|
|
475
|
|
|
if source not in ['geo', 'apex', 'qd', 'mlt'] \ |
476
|
|
|
or dest not in ['geo', 'apex', 'qd', 'mlt']: |
477
|
|
|
estr = 'Unknown coordinate transformation: {} -> {}'.format(source, |
478
|
|
|
dest) |
479
|
|
|
raise ValueError(estr) |
480
|
|
|
|
481
|
|
|
if datetime is None and ('mlt' in [source, dest]): |
482
|
|
|
raise ValueError('datetime must be given for MLT calculations') |
483
|
|
|
|
484
|
|
|
lat = helpers.checklat(lat) |
485
|
|
|
|
486
|
|
|
if source == dest: |
487
|
|
|
# The source and destination are the same, no conversion necessary |
488
|
|
|
return lat, lon |
489
|
|
|
else: |
490
|
|
|
# Select the correct conversion method |
491
|
|
|
if source == 'geo': |
492
|
|
|
if dest == 'qd': |
493
|
|
|
lat, lon = self.geo2qd(lat, lon, height) |
494
|
|
|
else: |
495
|
|
|
lat, lon = self.geo2apex(lat, lon, height) |
496
|
|
|
if dest == 'mlt': |
497
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
498
|
|
|
elif source == 'apex': |
499
|
|
|
if dest == 'geo': |
500
|
|
|
lat, lon, _ = self.apex2geo(lat, lon, height, |
501
|
|
|
precision=precision) |
502
|
|
|
elif dest == 'qd': |
503
|
|
|
lat, lon = self.apex2qd(lat, lon, height=height) |
504
|
|
|
elif dest == 'mlt': |
505
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
506
|
|
|
elif source == 'qd': |
507
|
|
|
if dest == 'geo': |
508
|
|
|
lat, lon, _ = self.qd2geo(lat, lon, height, |
509
|
|
|
precision=precision) |
510
|
|
|
else: |
511
|
|
|
lat, lon = self.qd2apex(lat, lon, height=height) |
512
|
|
|
if dest == 'mlt': |
513
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
514
|
|
|
elif source == 'mlt': |
515
|
|
|
# From MLT means that the input latitude is assumed to be apex, |
516
|
|
|
# so we don't need to update latitude for apex conversions. |
517
|
|
|
lon = self.mlt2mlon(lon, datetime, ssheight=ssheight) |
518
|
|
|
if dest == 'geo': |
519
|
|
|
lat, lon, _ = self.apex2geo(lat, lon, height, |
520
|
|
|
precision=precision) |
521
|
|
|
elif dest == 'qd': |
522
|
|
|
lat, lon = self.apex2qd(lat, lon, height=height) |
523
|
|
|
|
524
|
|
|
return lat, lon |
525
|
|
|
|
526
|
|
|
def geo2apex(self, glat, glon, height): |
527
|
|
|
"""Converts geodetic to modified apex coordinates. |
528
|
|
|
|
529
|
|
|
Parameters |
530
|
|
|
---------- |
531
|
|
|
glat : array_like |
532
|
|
|
Geodetic latitude |
533
|
|
|
glon : array_like |
534
|
|
|
Geodetic longitude |
535
|
|
|
height : array_like |
536
|
|
|
Altitude in km |
537
|
|
|
|
538
|
|
|
Returns |
539
|
|
|
------- |
540
|
|
|
alat : ndarray or float |
541
|
|
|
Modified apex latitude |
542
|
|
|
alon : ndarray or float |
543
|
|
|
Modified apex longitude |
544
|
|
|
|
545
|
|
|
""" |
546
|
|
|
|
547
|
|
|
glat = helpers.checklat(glat, name='glat') |
548
|
|
|
|
549
|
|
|
alat, alon = self._geo2apex(glat, glon, height) |
550
|
|
|
|
551
|
|
|
if np.any(alat == -9999): |
552
|
|
|
warnings.warn(''.join(['Apex latitude set to NaN where undefined ', |
553
|
|
|
'(apex height may be < reference height)'])) |
554
|
|
|
if np.isscalar(alat): |
555
|
|
|
alat = np.nan |
556
|
|
|
else: |
557
|
|
|
alat[alat == -9999] = np.nan |
558
|
|
|
|
559
|
|
|
# If array is returned, dtype is object, so convert to float |
560
|
|
|
return np.float64(alat), np.float64(alon) |
561
|
|
|
|
562
|
|
|
def apex2geo(self, alat, alon, height, precision=1e-10): |
563
|
|
|
"""Converts modified apex to geodetic coordinates. |
564
|
|
|
|
565
|
|
|
Parameters |
566
|
|
|
---------- |
567
|
|
|
alat : array_like |
568
|
|
|
Modified apex latitude |
569
|
|
|
alon : array_like |
570
|
|
|
Modified apex longitude |
571
|
|
|
height : array_like |
572
|
|
|
Altitude in km |
573
|
|
|
precision : float, optional |
574
|
|
|
Precision of output (degrees). A negative value of this argument |
575
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
576
|
|
|
on their spherical harmonic representation. A positive value causes |
577
|
|
|
the underlying Fortran routine to iterate until feeding the output |
578
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
579
|
|
|
within the specified precision. |
580
|
|
|
|
581
|
|
|
Returns |
582
|
|
|
------- |
583
|
|
|
glat : ndarray or float |
584
|
|
|
Geodetic latitude |
585
|
|
|
glon : ndarray or float |
586
|
|
|
Geodetic longitude |
587
|
|
|
error : ndarray or float |
588
|
|
|
The angular difference (degrees) between the input QD coordinates |
589
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
590
|
|
|
into geo2qd (APXG2Q) |
591
|
|
|
|
592
|
|
|
""" |
593
|
|
|
# Evaluate the latitude |
594
|
|
|
alat = helpers.checklat(alat, name='alat') |
595
|
|
|
|
596
|
|
|
# Perform the two-step convertion to geodetic coordinates |
597
|
|
|
qlat, qlon = self.apex2qd(alat, alon, height=height) |
598
|
|
|
glat, glon, error = self.qd2geo(qlat, qlon, height, precision=precision) |
599
|
|
|
|
600
|
|
|
return glat, glon, error |
601
|
|
|
|
602
|
|
|
def geo2qd(self, glat, glon, height): |
603
|
|
|
"""Converts geodetic to quasi-dipole coordinates. |
604
|
|
|
|
605
|
|
|
Parameters |
606
|
|
|
---------- |
607
|
|
|
glat : array_like |
608
|
|
|
Geodetic latitude |
609
|
|
|
glon : array_like |
610
|
|
|
Geodetic longitude |
611
|
|
|
height : array_like |
612
|
|
|
Altitude in km |
613
|
|
|
|
614
|
|
|
Returns |
615
|
|
|
------- |
616
|
|
|
qlat : ndarray or float |
617
|
|
|
Quasi-dipole latitude |
618
|
|
|
qlon : ndarray or float |
619
|
|
|
Quasi-dipole longitude |
620
|
|
|
|
621
|
|
|
""" |
622
|
|
|
# Evaluate the latitude |
623
|
|
|
glat = helpers.checklat(glat, name='glat') |
624
|
|
|
|
625
|
|
|
# Convert to quasi-dipole coordinates |
626
|
|
|
qlat, qlon = self._geo2qd(glat, glon, height) |
627
|
|
|
|
628
|
|
|
# If array is returned, dtype is object, so convert to float |
629
|
|
|
return np.float64(qlat), np.float64(qlon) |
630
|
|
|
|
631
|
|
|
def qd2geo(self, qlat, qlon, height, precision=1e-10): |
632
|
|
|
"""Converts quasi-dipole to geodetic coordinates. |
633
|
|
|
|
634
|
|
|
Parameters |
635
|
|
|
---------- |
636
|
|
|
qlat : array_like |
637
|
|
|
Quasi-dipole latitude |
638
|
|
|
qlon : array_like |
639
|
|
|
Quasi-dipole longitude |
640
|
|
|
height : array_like |
641
|
|
|
Altitude in km |
642
|
|
|
precision : float, optional |
643
|
|
|
Precision of output (degrees). A negative value of this argument |
644
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
645
|
|
|
on their spherical harmonic representation. A positive value causes |
646
|
|
|
the underlying Fortran routine to iterate until feeding the output |
647
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
648
|
|
|
within the specified precision. |
649
|
|
|
|
650
|
|
|
Returns |
651
|
|
|
------- |
652
|
|
|
glat : ndarray or float |
653
|
|
|
Geodetic latitude |
654
|
|
|
glon : ndarray or float |
655
|
|
|
Geodetic longitude |
656
|
|
|
error : ndarray or float |
657
|
|
|
The angular difference (degrees) between the input QD coordinates |
658
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
659
|
|
|
into geo2qd (APXG2Q) |
660
|
|
|
|
661
|
|
|
""" |
662
|
|
|
# Evaluate the latitude |
663
|
|
|
qlat = helpers.checklat(qlat, name='qlat') |
664
|
|
|
|
665
|
|
|
# Convert to geodetic coordinates |
666
|
|
|
glat, glon, error = self._qd2geo(qlat, qlon, height, precision) |
667
|
|
|
|
668
|
|
|
# If array is returned, dtype is object, so convert to float |
669
|
|
|
return np.float64(glat), np.float64(glon), np.float64(error) |
670
|
|
|
|
671
|
|
|
def apex2qd(self, alat, alon, height): |
672
|
|
|
"""Converts modified apex to quasi-dipole coordinates. |
673
|
|
|
|
674
|
|
|
Parameters |
675
|
|
|
---------- |
676
|
|
|
alat : array_like |
677
|
|
|
Modified apex latitude |
678
|
|
|
alon : array_like |
679
|
|
|
Modified apex longitude |
680
|
|
|
height : array_like |
681
|
|
|
Altitude in km |
682
|
|
|
|
683
|
|
|
Returns |
684
|
|
|
------- |
685
|
|
|
qlat : ndarray or float |
686
|
|
|
Quasi-dipole latitude |
687
|
|
|
qlon : ndarray or float |
688
|
|
|
Quasi-dipole longitude |
689
|
|
|
|
690
|
|
|
Raises |
691
|
|
|
------ |
692
|
|
|
ApexHeightError |
693
|
|
|
if `height` > apex height |
694
|
|
|
|
695
|
|
|
""" |
696
|
|
|
# Convert the latitude to apex, latitude check performed in the |
697
|
|
|
# hidden method |
698
|
|
|
qlat, qlon = self._apex2qd(alat, alon, height) |
699
|
|
|
|
700
|
|
|
# If array is returned, the dtype is object, so convert to float |
701
|
|
|
return np.float64(qlat), np.float64(qlon) |
702
|
|
|
|
703
|
|
|
def qd2apex(self, qlat, qlon, height): |
704
|
|
|
"""Converts quasi-dipole to modified apex coordinates. |
705
|
|
|
|
706
|
|
|
Parameters |
707
|
|
|
---------- |
708
|
|
|
qlat : array_like |
709
|
|
|
Quasi-dipole latitude |
710
|
|
|
qlon : array_like |
711
|
|
|
Quasi-dipole longitude |
712
|
|
|
height : array_like |
713
|
|
|
Altitude in km |
714
|
|
|
|
715
|
|
|
Returns |
716
|
|
|
------- |
717
|
|
|
alat : ndarray or float |
718
|
|
|
Modified apex latitude |
719
|
|
|
alon : ndarray or float |
720
|
|
|
Modified apex longitude |
721
|
|
|
|
722
|
|
|
Raises |
723
|
|
|
------ |
724
|
|
|
ApexHeightError |
725
|
|
|
if apex height < reference height |
726
|
|
|
|
727
|
|
|
""" |
728
|
|
|
# Perform the conversion from quasi-dipole to apex coordinates |
729
|
|
|
alat, alon = self._qd2apex(qlat, qlon, height) |
730
|
|
|
|
731
|
|
|
# If array is returned, the dtype is object, so convert to float |
732
|
|
|
return np.float64(alat), np.float64(alon) |
733
|
|
|
|
734
|
|
|
def mlon2mlt(self, mlon, dtime, ssheight=318550): |
735
|
|
|
"""Computes the magnetic local time at the specified magnetic longitude |
736
|
|
|
and UT. |
737
|
|
|
|
738
|
|
|
Parameters |
739
|
|
|
---------- |
740
|
|
|
mlon : array_like |
741
|
|
|
Magnetic longitude (apex and quasi-dipole longitude are always |
742
|
|
|
equal) |
743
|
|
|
dtime : :class:`datetime.datetime` |
744
|
|
|
Date and time |
745
|
|
|
ssheight : float, optional |
746
|
|
|
Altitude in km to use for converting the subsolar point from |
747
|
|
|
geographic to magnetic coordinates. A high altitude is used |
748
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
749
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
750
|
|
|
The current default is 50 * 6371, roughly 50 RE. (default=318550) |
751
|
|
|
|
752
|
|
|
Returns |
753
|
|
|
------- |
754
|
|
|
mlt : ndarray or float |
755
|
|
|
Magnetic local time in hours [0, 24) |
756
|
|
|
|
757
|
|
|
Notes |
758
|
|
|
----- |
759
|
|
|
To compute the MLT, we find the apex longitude of the subsolar point at |
760
|
|
|
the given time. Then the MLT of the given point will be computed from |
761
|
|
|
the separation in magnetic longitude from this point (1 hour = 15 |
762
|
|
|
degrees). |
763
|
|
|
|
764
|
|
|
""" |
765
|
|
|
# Get the subsolar location |
766
|
|
|
ssglat, ssglon = helpers.subsol(dtime) |
767
|
|
|
|
768
|
|
|
# Convert the subsolar location to apex coordinates |
769
|
|
|
_, ssalon = self.geo2apex(ssglat, ssglon, ssheight) |
770
|
|
|
|
771
|
|
|
# Calculate the magnetic local time (0-24 h range) from apex longitude. |
772
|
|
|
# np.float64 will ensure lists are converted to arrays |
773
|
|
|
mlt = (180 + np.float64(mlon) - ssalon) / 15 % 24 |
774
|
|
|
|
775
|
|
|
return mlt |
776
|
|
|
|
777
|
|
|
def mlt2mlon(self, mlt, dtime, ssheight=318550): |
778
|
|
|
"""Computes the magnetic longitude at the specified MLT and UT. |
779
|
|
|
|
780
|
|
|
Parameters |
781
|
|
|
---------- |
782
|
|
|
mlt : array_like |
783
|
|
|
Magnetic local time |
784
|
|
|
dtime : :class:`datetime.datetime` |
785
|
|
|
Date and time |
786
|
|
|
ssheight : float, optional |
787
|
|
|
Altitude in km to use for converting the subsolar point from |
788
|
|
|
geographic to magnetic coordinates. A high altitude is used |
789
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
790
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
791
|
|
|
The current default is 50 * 6371, roughly 50 RE. (default=318550) |
792
|
|
|
|
793
|
|
|
Returns |
794
|
|
|
------- |
795
|
|
|
mlon : ndarray or float |
796
|
|
|
Magnetic longitude [0, 360) (apex and quasi-dipole longitude are |
797
|
|
|
always equal) |
798
|
|
|
|
799
|
|
|
Notes |
800
|
|
|
----- |
801
|
|
|
To compute the magnetic longitude, we find the apex longitude of the |
802
|
|
|
subsolar point at the given time. Then the magnetic longitude of the |
803
|
|
|
given point will be computed from the separation in magnetic local time |
804
|
|
|
from this point (1 hour = 15 degrees). |
805
|
|
|
""" |
806
|
|
|
# Get the location of the subsolar point at this time |
807
|
|
|
ssglat, ssglon = helpers.subsol(dtime) |
808
|
|
|
|
809
|
|
|
# Convert the location of the subsolar point to apex coordinates |
810
|
|
|
_, ssalon = self.geo2apex(ssglat, ssglon, ssheight) |
811
|
|
|
|
812
|
|
|
# Calculate the magnetic longitude (0-360 h range) from MLT. |
813
|
|
|
# np.float64 will ensure lists are converted to arrays |
814
|
|
|
mlon = (15 * np.float64(mlt) - 180 + ssalon + 360) % 360 |
815
|
|
|
|
816
|
|
|
return mlon |
817
|
|
|
|
818
|
|
|
def map_to_height(self, glat, glon, height, newheight, conjugate=False, |
819
|
|
|
precision=1e-10): |
820
|
|
|
"""Performs mapping of points along the magnetic field to the closest |
821
|
|
|
or conjugate hemisphere. |
822
|
|
|
|
823
|
|
|
Parameters |
824
|
|
|
---------- |
825
|
|
|
glat : array_like |
826
|
|
|
Geodetic latitude |
827
|
|
|
glon : array_like |
828
|
|
|
Geodetic longitude |
829
|
|
|
height : array_like |
830
|
|
|
Source altitude in km |
831
|
|
|
newheight : array_like |
832
|
|
|
Destination altitude in km |
833
|
|
|
conjugate : bool, optional |
834
|
|
|
Map to `newheight` in the conjugate hemisphere instead of the |
835
|
|
|
closest hemisphere |
836
|
|
|
precision : float, optional |
837
|
|
|
Precision of output (degrees). A negative value of this argument |
838
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
839
|
|
|
on their spherical harmonic representation. A positive value causes |
840
|
|
|
the underlying Fortran routine to iterate until feeding the output |
841
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
842
|
|
|
within the specified precision. |
843
|
|
|
|
844
|
|
|
Returns |
845
|
|
|
------- |
846
|
|
|
newglat : ndarray or float |
847
|
|
|
Geodetic latitude of mapped point |
848
|
|
|
newglon : ndarray or float |
849
|
|
|
Geodetic longitude of mapped point |
850
|
|
|
error : ndarray or float |
851
|
|
|
The angular difference (degrees) between the input QD coordinates |
852
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
853
|
|
|
into geo2qd (APXG2Q) |
854
|
|
|
|
855
|
|
|
Notes |
856
|
|
|
----- |
857
|
|
|
The mapping is done by converting glat/glon/height to modified apex |
858
|
|
|
lat/lon, and converting back to geographic using newheight (if |
859
|
|
|
conjugate, use negative apex latitude when converting back) |
860
|
|
|
|
861
|
|
|
""" |
862
|
|
|
|
863
|
|
|
alat, alon = self.geo2apex(glat, glon, height) |
864
|
|
|
if conjugate: |
865
|
|
|
alat = -alat |
866
|
|
|
try: |
867
|
|
|
newglat, newglon, error = self.apex2geo(alat, alon, newheight, |
868
|
|
|
precision=precision) |
869
|
|
|
except ApexHeightError: |
870
|
|
|
raise ApexHeightError("input height is > apex height") |
871
|
|
|
|
872
|
|
|
return newglat, newglon, error |
873
|
|
|
|
874
|
|
|
def map_E_to_height(self, alat, alon, height, newheight, edata): |
875
|
|
|
"""Performs mapping of electric field along the magnetic field. |
876
|
|
|
|
877
|
|
|
It is assumed that the electric field is perpendicular to B. |
878
|
|
|
|
879
|
|
|
Parameters |
880
|
|
|
---------- |
881
|
|
|
alat : (N,) array_like or float |
882
|
|
|
Modified apex latitude |
883
|
|
|
alon : (N,) array_like or float |
884
|
|
|
Modified apex longitude |
885
|
|
|
height : (N,) array_like or float |
886
|
|
|
Source altitude in km |
887
|
|
|
newheight : (N,) array_like or float |
888
|
|
|
Destination altitude in km |
889
|
|
|
edata : (3,) or (3, N) array_like |
890
|
|
|
Electric field (at `alat`, `alon`, `height`) in geodetic east, |
891
|
|
|
north, and up components |
892
|
|
|
|
893
|
|
|
Returns |
894
|
|
|
------- |
895
|
|
|
out : (3, N) or (3,) ndarray |
896
|
|
|
The electric field at `newheight` (geodetic east, north, and up |
897
|
|
|
components) |
898
|
|
|
|
899
|
|
|
""" |
900
|
|
|
# Call hidden mapping method with flag for the electric field |
901
|
|
|
out = self._map_EV_to_height(alat, alon, height, newheight, edata, 'E') |
902
|
|
|
|
903
|
|
|
return out |
904
|
|
|
|
905
|
|
|
def map_V_to_height(self, alat, alon, height, newheight, vdata): |
906
|
|
|
"""Performs mapping of electric drift velocity along the magnetic field. |
907
|
|
|
|
908
|
|
|
It is assumed that the electric field is perpendicular to B. |
909
|
|
|
|
910
|
|
|
Parameters |
911
|
|
|
---------- |
912
|
|
|
alat : (N,) array_like or float |
913
|
|
|
Modified apex latitude |
914
|
|
|
alon : (N,) array_like or float |
915
|
|
|
Modified apex longitude |
916
|
|
|
height : (N,) array_like or float |
917
|
|
|
Source altitude in km |
918
|
|
|
newheight : (N,) array_like or float |
919
|
|
|
Destination altitude in km |
920
|
|
|
vdata : (3,) or (3, N) array_like |
921
|
|
|
Electric drift velocity (at `alat`, `alon`, `height`) in geodetic |
922
|
|
|
east, north, and up components |
923
|
|
|
|
924
|
|
|
Returns |
925
|
|
|
------- |
926
|
|
|
out : (3, N) or (3,) ndarray |
927
|
|
|
The electric drift velocity at `newheight` (geodetic east, north, |
928
|
|
|
and up components) |
929
|
|
|
|
930
|
|
|
""" |
931
|
|
|
# Call hidden mapping method with flag for the electric drift velocities |
932
|
|
|
out = self._map_EV_to_height(alat, alon, height, newheight, vdata, 'V') |
933
|
|
|
|
934
|
|
|
return out |
935
|
|
|
|
936
|
|
|
def basevectors_qd(self, lat, lon, height, coords='geo', precision=1e-10): |
937
|
|
|
"""Get quasi-dipole base vectors f1 and f2 at the specified coordinates. |
938
|
|
|
|
939
|
|
|
Parameters |
940
|
|
|
---------- |
941
|
|
|
lat : (N,) array_like or float |
942
|
|
|
Latitude |
943
|
|
|
lon : (N,) array_like or float |
944
|
|
|
Longitude |
945
|
|
|
height : (N,) array_like or float |
946
|
|
|
Altitude in km |
947
|
|
|
coords : {'geo', 'apex', 'qd'}, optional |
948
|
|
|
Input coordinate system |
949
|
|
|
precision : float, optional |
950
|
|
|
Precision of output (degrees) when converting to geo. A negative |
951
|
|
|
value of this argument produces a low-precision calculation of |
952
|
|
|
geodetic lat/lon based only on their spherical harmonic |
953
|
|
|
representation. |
954
|
|
|
A positive value causes the underlying Fortran routine to iterate |
955
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
956
|
|
|
the input QD lat/lon to within the specified precision (all |
957
|
|
|
coordinates being converted to geo are converted to QD first and |
958
|
|
|
passed through APXG2Q). |
959
|
|
|
|
960
|
|
|
Returns |
961
|
|
|
------- |
962
|
|
|
f1 : (2, N) or (2,) ndarray |
963
|
|
|
f2 : (2, N) or (2,) ndarray |
964
|
|
|
|
965
|
|
|
Notes |
966
|
|
|
----- |
967
|
|
|
The vectors are described by Richmond [1995] [2]_ and |
968
|
|
|
Emmert et al. [2010] [3]_. The vector components are geodetic east and |
969
|
|
|
north. |
970
|
|
|
|
971
|
|
|
References |
972
|
|
|
---------- |
973
|
|
|
.. [2] Richmond, A. D. (1995), Ionospheric Electrodynamics Using |
974
|
|
|
Magnetic Apex Coordinates, Journal of geomagnetism and |
975
|
|
|
geoelectricity, 47(2), 191–212, :doi:`10.5636/jgg.47.191`. |
976
|
|
|
|
977
|
|
|
.. [3] Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), |
978
|
|
|
A computationally compact representation of Magnetic-Apex |
979
|
|
|
and Quasi-Dipole coordinates with smooth base vectors, |
980
|
|
|
J. Geophys. Res., 115(A8), A08322, :doi:`10.1029/2010JA015326`. |
981
|
|
|
|
982
|
|
|
""" |
983
|
|
|
# Convert from current coordinates to geodetic coordinates |
984
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
985
|
|
|
precision=precision) |
986
|
|
|
|
987
|
|
|
# Get the geodetic base vectors |
988
|
|
|
f1, f2 = self._basevec(glat, glon, height) |
989
|
|
|
|
990
|
|
|
# If inputs are not scalar, each vector is an array of arrays, |
991
|
|
|
# so reshape to a single array |
992
|
|
|
if f1.dtype == object: |
993
|
|
|
f1 = np.vstack(f1).T |
994
|
|
|
f2 = np.vstack(f2).T |
995
|
|
|
|
996
|
|
|
return f1, f2 |
997
|
|
|
|
998
|
|
|
def basevectors_apex(self, lat, lon, height, coords='geo', precision=1e-10): |
999
|
|
|
"""Returns base vectors in quasi-dipole and apex coordinates. |
1000
|
|
|
|
1001
|
|
|
Parameters |
1002
|
|
|
---------- |
1003
|
|
|
lat : array_like or float |
1004
|
|
|
Latitude in degrees; input must be broadcastable with `lon` and |
1005
|
|
|
`height`. |
1006
|
|
|
lon : array_like or float |
1007
|
|
|
Longitude in degrees; input must be broadcastable with `lat` and |
1008
|
|
|
`height`. |
1009
|
|
|
height : array_like or float |
1010
|
|
|
Altitude in km; input must be broadcastable with `lon` and `lat`. |
1011
|
|
|
coords : str, optional |
1012
|
|
|
Input coordinate system, expects one of 'geo', 'apex', or 'qd' |
1013
|
|
|
(default='geo') |
1014
|
|
|
precision : float, optional |
1015
|
|
|
Precision of output (degrees) when converting to geo. A negative |
1016
|
|
|
value of this argument produces a low-precision calculation of |
1017
|
|
|
geodetic lat/lon based only on their spherical harmonic |
1018
|
|
|
representation. |
1019
|
|
|
A positive value causes the underlying Fortran routine to iterate |
1020
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
1021
|
|
|
the input QD lat/lon to within the specified precision (all |
1022
|
|
|
coordinates being converted to geo are converted to QD first and |
1023
|
|
|
passed through APXG2Q). |
1024
|
|
|
|
1025
|
|
|
Returns |
1026
|
|
|
------- |
1027
|
|
|
f1 : (3, N) or (3,) ndarray |
1028
|
|
|
Quasi-dipole base vector equivalent to e1, tangent to contours of |
1029
|
|
|
constant lambdaA |
1030
|
|
|
f2 : (3, N) or (3,) ndarray |
1031
|
|
|
Quasi-dipole base vector equivalent to e2 |
1032
|
|
|
f3 : (3, N) or (3,) ndarray |
1033
|
|
|
Quasi-dipole base vector equivalent to e3, tangent to contours of |
1034
|
|
|
PhiA |
1035
|
|
|
g1 : (3, N) or (3,) ndarray |
1036
|
|
|
Quasi-dipole base vector equivalent to d1 |
1037
|
|
|
g2 : (3, N) or (3,) ndarray |
1038
|
|
|
Quasi-dipole base vector equivalent to d2 |
1039
|
|
|
g3 : (3, N) or (3,) ndarray |
1040
|
|
|
Quasi-dipole base vector equivalent to d3 |
1041
|
|
|
d1 : (3, N) or (3,) ndarray |
1042
|
|
|
Apex base vector normal to contours of constant PhiA |
1043
|
|
|
d2 : (3, N) or (3,) ndarray |
1044
|
|
|
Apex base vector that completes the right-handed system |
1045
|
|
|
d3 : (3, N) or (3,) ndarray |
1046
|
|
|
Apex base vector normal to contours of constant lambdaA |
1047
|
|
|
e1 : (3, N) or (3,) ndarray |
1048
|
|
|
Apex base vector tangent to contours of constant V0 |
1049
|
|
|
e2 : (3, N) or (3,) ndarray |
1050
|
|
|
Apex base vector that completes the right-handed system |
1051
|
|
|
e3 : (3, N) or (3,) ndarray |
1052
|
|
|
Apex base vector tangent to contours of constant PhiA |
1053
|
|
|
|
1054
|
|
|
Notes |
1055
|
|
|
----- |
1056
|
|
|
The vectors are described by Richmond [1995] [4]_ and |
1057
|
|
|
Emmert et al. [2010] [5]_. The vector components are geodetic east, |
1058
|
|
|
north, and up (only east and north for `f1` and `f2`). |
1059
|
|
|
|
1060
|
|
|
`f3`, `g1`, `g2`, and `g3` are not part of the Fortran code |
1061
|
|
|
by Emmert et al. [2010] [5]_. They are calculated by this |
1062
|
|
|
Python library according to the following equations in |
1063
|
|
|
Richmond [1995] [4]_: |
1064
|
|
|
|
1065
|
|
|
* `g1`: Eqn. 6.3 |
1066
|
|
|
* `g2`: Eqn. 6.4 |
1067
|
|
|
* `g3`: Eqn. 6.5 |
1068
|
|
|
* `f3`: Eqn. 6.8 |
1069
|
|
|
|
1070
|
|
|
References |
1071
|
|
|
---------- |
1072
|
|
|
.. [4] Richmond, A. D. (1995), Ionospheric Electrodynamics Using |
1073
|
|
|
Magnetic Apex Coordinates, Journal of geomagnetism and |
1074
|
|
|
geoelectricity, 47(2), 191–212, :doi:`10.5636/jgg.47.191`. |
1075
|
|
|
|
1076
|
|
|
.. [5] Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), |
1077
|
|
|
A computationally compact representation of Magnetic-Apex |
1078
|
|
|
and Quasi-Dipole coordinates with smooth base vectors, |
1079
|
|
|
J. Geophys. Res., 115(A8), A08322, :doi:`10.1029/2010JA015326`. |
1080
|
|
|
|
1081
|
|
|
""" |
1082
|
|
|
# Convert to geodetic coordinates from current coordinate system |
1083
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
1084
|
|
|
precision=precision) |
1085
|
|
|
|
1086
|
|
|
# Retrieve the desired magnetic locations and base vectors |
1087
|
|
|
returnvals = list(self._geo2apexall(glat, glon, height)) |
1088
|
|
|
qlat = np.float64(returnvals[0]) |
1089
|
|
|
alat = np.float64(returnvals[2]) |
1090
|
|
|
bvec_ind = [4, 5, 7, 8, 9, 11, 12, 13] |
1091
|
|
|
|
1092
|
|
|
# If inputs are not scalar, each vector is an array of arrays, |
1093
|
|
|
# so reshape to a single array |
1094
|
|
|
if returnvals[4].dtype == object: |
1095
|
|
|
for i in bvec_ind: |
1096
|
|
|
returnvals[i] = np.vstack(returnvals[i]).T |
1097
|
|
|
|
1098
|
|
|
# Make sure the base vector arrays are 2D |
1099
|
|
|
for i in bvec_ind: |
1100
|
|
|
if i in [4, 5]: |
1101
|
|
|
rsize = (2, returnvals[i].size // 2) |
1102
|
|
|
else: |
1103
|
|
|
rsize = (3, returnvals[i].size // 3) |
1104
|
|
|
returnvals[i] = returnvals[i].reshape(rsize) |
1105
|
|
|
|
1106
|
|
|
# Assign the reshaped base vectors |
1107
|
|
|
f1, f2 = returnvals[4:6] |
1108
|
|
|
d1, d2, d3 = returnvals[7:10] |
1109
|
|
|
e1, e2, e3 = returnvals[11:14] |
1110
|
|
|
|
1111
|
|
|
# Compute f3, g1, g2, g3 (outstanding quasi-dipole base vectors) |
1112
|
|
|
# |
1113
|
|
|
# Start by calculating the D equivalent, F (F_scalar) |
1114
|
|
|
f1_stack = np.vstack((f1, np.zeros_like(f1[0]))) |
1115
|
|
|
f2_stack = np.vstack((f2, np.zeros_like(f2[0]))) |
1116
|
|
|
F_scalar = np.cross(f1_stack.T, f2_stack.T).T[-1] |
1117
|
|
|
|
1118
|
|
|
# Get the cosine of the magnetic inclination |
1119
|
|
|
cos_mag_inc = helpers.getcosIm(alat) |
1120
|
|
|
|
1121
|
|
|
# Define the k base vectors |
1122
|
|
|
k_unit = np.array([0, 0, 1], dtype=np.float64).reshape((3, 1)) |
1123
|
|
|
|
1124
|
|
|
# Calculate the remaining quasi-dipole base vectors |
1125
|
|
|
g1 = ((self.RE + np.float64(height)) |
1126
|
|
|
/ (self.RE + self.refh)) ** (3 / 2) * d1 / F_scalar |
1127
|
|
|
g2 = -1.0 / (2.0 * F_scalar * np.tan(np.radians(qlat))) * ( |
1128
|
|
|
k_unit + ((self.RE + np.float64(height)) |
1129
|
|
|
/ (self.RE + self.refh)) * d2 / cos_mag_inc) |
1130
|
|
|
g3 = k_unit * F_scalar |
1131
|
|
|
f3 = np.cross(g1.T, g2.T).T |
1132
|
|
|
|
1133
|
|
|
# Reshape the output |
1134
|
|
|
out = [f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, e3] |
1135
|
|
|
|
1136
|
|
|
if np.any(alat == -9999): |
1137
|
|
|
warnings.warn(''.join(['Base vectors g, d, e, and f3 set to NaN ', |
1138
|
|
|
'where apex latitude is undefined (apex ', |
1139
|
|
|
'height may be < reference height)'])) |
1140
|
|
|
mask = alat == -9999 |
1141
|
|
|
for i in range(len(out) - 2): |
1142
|
|
|
out[i + 2] = np.where(mask, np.nan, out[i + 2]) |
1143
|
|
|
|
1144
|
|
|
out = tuple(np.squeeze(bvec) for bvec in out) |
1145
|
|
|
|
1146
|
|
|
return out |
1147
|
|
|
|
1148
|
|
|
def get_apex(self, lat, height=None): |
1149
|
|
|
""" Calculate apex height |
1150
|
|
|
|
1151
|
|
|
Parameters |
1152
|
|
|
---------- |
1153
|
|
|
lat : float |
1154
|
|
|
Apex latitude in degrees |
1155
|
|
|
height : float or NoneType |
1156
|
|
|
Height above the surface of the Earth in km or NoneType to use |
1157
|
|
|
reference height (default=None) |
1158
|
|
|
|
1159
|
|
|
Returns |
1160
|
|
|
------- |
1161
|
|
|
apex_height : float |
1162
|
|
|
Height of the field line apex in km |
1163
|
|
|
|
1164
|
|
|
""" |
1165
|
|
|
# Check the latitude |
1166
|
|
|
lat = helpers.checklat(lat, name='alat') |
1167
|
|
|
|
1168
|
|
|
# Ensure the height is set |
1169
|
|
|
if height is None: |
1170
|
|
|
height = self.refh |
1171
|
|
|
|
1172
|
|
|
# Calculate the apex height |
1173
|
|
|
cos_lat_squared = np.cos(np.radians(lat)) ** 2 |
1174
|
|
|
apex_height = (self.RE + height) / cos_lat_squared - self.RE |
1175
|
|
|
|
1176
|
|
|
return apex_height |
1177
|
|
|
|
1178
|
|
|
def set_epoch(self, year): |
1179
|
|
|
"""Updates the epoch for all subsequent conversions. |
1180
|
|
|
|
1181
|
|
|
Parameters |
1182
|
|
|
---------- |
1183
|
|
|
year : float |
1184
|
|
|
Decimal year |
1185
|
|
|
|
1186
|
|
|
""" |
1187
|
|
|
# Set the year and load the data file |
1188
|
|
|
self.year = np.float64(year) |
1189
|
|
|
fa.loadapxsh(self.datafile, self.year) |
1190
|
|
|
|
1191
|
|
|
# Call the Fortran routine to set time |
1192
|
|
|
fa.cofrm(self.year, self.igrf_fn) |
1193
|
|
|
return |
1194
|
|
|
|
1195
|
|
|
def set_refh(self, refh): |
1196
|
|
|
"""Updates the apex reference height for all subsequent conversions. |
1197
|
|
|
|
1198
|
|
|
Parameters |
1199
|
|
|
---------- |
1200
|
|
|
refh : float |
1201
|
|
|
Apex reference height in km |
1202
|
|
|
|
1203
|
|
|
Notes |
1204
|
|
|
----- |
1205
|
|
|
The reference height is the height to which field lines will be mapped, |
1206
|
|
|
and is only relevant for conversions involving apex (not quasi-dipole). |
1207
|
|
|
|
1208
|
|
|
""" |
1209
|
|
|
self.refh = refh |
1210
|
|
|
|
1211
|
|
|
def get_babs(self, glat, glon, height): |
1212
|
|
|
"""Returns the magnitude of the IGRF magnetic field in tesla. |
1213
|
|
|
|
1214
|
|
|
Parameters |
1215
|
|
|
---------- |
1216
|
|
|
glat : array_like |
1217
|
|
|
Geodetic latitude in degrees |
1218
|
|
|
glon : array_like |
1219
|
|
|
Geodetic longitude in degrees |
1220
|
|
|
height : array_like |
1221
|
|
|
Altitude in km |
1222
|
|
|
|
1223
|
|
|
Returns |
1224
|
|
|
------- |
1225
|
|
|
babs : ndarray or float |
1226
|
|
|
Magnitude of the IGRF magnetic field in Tesla |
1227
|
|
|
|
1228
|
|
|
""" |
1229
|
|
|
# Get the absolute value of the magnetic field at the desired location |
1230
|
|
|
babs = self._get_babs(glat, glon, height) |
1231
|
|
|
|
1232
|
|
|
# If array is returned, the dtype is object, so convert to float |
1233
|
|
|
return np.float64(babs) |
1234
|
|
|
|
1235
|
|
|
def bvectors_apex(self, lat, lon, height, coords='geo', precision=1e-10): |
1236
|
|
|
"""Returns the magnetic field vectors in apex coordinates. |
1237
|
|
|
|
1238
|
|
|
Parameters |
1239
|
|
|
---------- |
1240
|
|
|
lat : (N,) array_like or float |
1241
|
|
|
Latitude |
1242
|
|
|
lon : (N,) array_like or float |
1243
|
|
|
Longitude |
1244
|
|
|
height : (N,) array_like or float |
1245
|
|
|
Altitude in km |
1246
|
|
|
coords : {'geo', 'apex', 'qd'}, optional |
1247
|
|
|
Input coordinate system |
1248
|
|
|
precision : float, optional |
1249
|
|
|
Precision of output (degrees) when converting to geo. A negative |
1250
|
|
|
value of this argument produces a low-precision calculation of |
1251
|
|
|
geodetic lat/lon based only on their spherical harmonic |
1252
|
|
|
representation. |
1253
|
|
|
A positive value causes the underlying Fortran routine to iterate |
1254
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
1255
|
|
|
the input QD lat/lon to within the specified precision (all |
1256
|
|
|
coordinates being converted to geo are converted to QD first and |
1257
|
|
|
passed through APXG2Q). |
1258
|
|
|
|
1259
|
|
|
Returns |
1260
|
|
|
------- |
1261
|
|
|
main_mag_e3: (1, N) or (1,) ndarray |
1262
|
|
|
IGRF magnitude divided by a scaling factor, D (d_scale) to give |
1263
|
|
|
the main B field magnitude along the e3 base vector |
1264
|
|
|
e3 : (3, N) or (3,) ndarray |
1265
|
|
|
Base vector tangent to the contours of constant V_0 and Phi_A |
1266
|
|
|
main_mag_d3: (1, N) or (1,) ndarray |
1267
|
|
|
IGRF magnitude multiplied by a scaling factor, D (d_scale) to give |
1268
|
|
|
the main B field magnitudee along the d3 base vector |
1269
|
|
|
d3 : (3, N) or (3,) ndarray |
1270
|
|
|
Base vector equivalent to the scaled main field unit vector |
1271
|
|
|
|
1272
|
|
|
Notes |
1273
|
|
|
----- |
1274
|
|
|
See Richmond, A. D. (1995) [4]_ equations 3.8-3.14 |
1275
|
|
|
|
1276
|
|
|
The apex magnetic field vectors described by Richmond [1995] [4]_ and |
1277
|
|
|
Emmert et al. [2010] [5]_, specfically the Be3 (main_mag_e3) and Bd3 |
1278
|
|
|
(main_mag_d3) components. The vector components are geodetic east, |
1279
|
|
|
north, and up. |
1280
|
|
|
|
1281
|
|
|
References |
1282
|
|
|
---------- |
1283
|
|
|
Richmond, A. D. (1995) [4]_ |
1284
|
|
|
Emmert, J. T. et al. (2010) [5]_ |
1285
|
|
|
|
1286
|
|
|
""" |
1287
|
|
|
# Convert the current coordinates to geodetic coordinates |
1288
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
1289
|
|
|
precision=precision) |
1290
|
|
|
|
1291
|
|
|
# Get the magnitude of the magnetic field at the desired location |
1292
|
|
|
babs = self.get_babs(glat, glon, height) |
1293
|
|
|
|
1294
|
|
|
# Retrieve the necessary base vectors |
1295
|
|
|
_, _, _, _, _, _, d1, d2, d3, _, _, e3 = self.basevectors_apex( |
1296
|
|
|
glat, glon, height, coords='geo') |
1297
|
|
|
|
1298
|
|
|
# Perform the calculations described in [4] |
1299
|
|
|
d1_cross_d2 = np.cross(d1.T, d2.T).T |
1300
|
|
|
d_scale = np.sqrt(np.sum(d1_cross_d2 ** 2, axis=0)) # D in [4] 3.13 |
1301
|
|
|
|
1302
|
|
|
main_mag_e3 = babs / d_scale # Solve for b0 in [4] 3.13 |
1303
|
|
|
main_mag_d3 = babs * d_scale # Solve for b0 in [4] 3.10 |
1304
|
|
|
|
1305
|
|
|
return main_mag_e3, e3, main_mag_d3, d3 |
1306
|
|
|
|