|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
from __future__ import division, absolute_import, unicode_literals |
|
4
|
|
|
|
|
5
|
|
|
import datetime as dt |
|
6
|
|
|
|
|
7
|
|
|
import numpy as np |
|
8
|
|
|
import pytest |
|
9
|
|
|
from numpy.testing import assert_allclose |
|
10
|
|
|
|
|
11
|
|
|
from apexpy import helpers |
|
12
|
|
|
|
|
13
|
|
|
|
|
14
|
|
|
# ---------------------------------------------------------------------------- |
|
15
|
|
|
# NOTE: whenever function outputs are tested against hard-coded numbers, the |
|
16
|
|
|
# test results (numbers) were obtained by running the code that is tested. |
|
17
|
|
|
# Therefore these tests below only check that nothing changes when refactoring, |
|
18
|
|
|
# etc., and not if the results are actually correct |
|
19
|
|
|
# ---------------------------------------------------------------------------- |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
# ============================================================================ |
|
23
|
|
|
# Test checklat |
|
24
|
|
|
# ============================================================================ |
|
25
|
|
|
|
|
26
|
|
|
@pytest.mark.parametrize('lat', [(90), (0), (-90), (np.nan)]) |
|
27
|
|
|
def test_checklat_scalar(lat): |
|
28
|
|
|
"""Test good latitude check with scalars.""" |
|
29
|
|
|
if np.isnan(lat): |
|
30
|
|
|
assert np.isnan(helpers.checklat(lat)) |
|
31
|
|
|
else: |
|
32
|
|
|
assert helpers.checklat(lat) == lat |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
|
@pytest.mark.parametrize('lat', [(90 + 1e-5), (-90 - 1e-5)]) |
|
36
|
|
|
def test_checklat_scalar_clip(lat): |
|
37
|
|
|
"""Test good latitude check with scalars just beyond the lat limits.""" |
|
38
|
|
|
assert helpers.checklat(lat) == np.sign(lat) * np.floor(abs(lat)) |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
|
@pytest.mark.parametrize('in_args,msg', |
|
42
|
|
|
[([90 + 1e-4], "lat must be in"), |
|
43
|
|
|
([-90 - 1e-4, 'glat'], "glat must be in"), |
|
44
|
|
|
([[-90 - 1e-5, -90, 0, 90, 90 + 1e-4], 'glat'], |
|
45
|
|
|
"glat must be in"), |
|
46
|
|
|
([[-90 - 1e-4, -90, np.nan, np.nan, 90 + 1e-5]], |
|
47
|
|
|
'lat must be in')]) |
|
48
|
|
|
def test_checklat_error(in_args, msg): |
|
49
|
|
|
"""Test bad latitude raises ValueError with appropriate message.""" |
|
50
|
|
|
with pytest.raises(ValueError) as verr: |
|
51
|
|
|
helpers.checklat(*in_args) |
|
52
|
|
|
|
|
53
|
|
|
assert str(verr.value).startswith(msg) |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
|
def test_checklat_array(): |
|
57
|
|
|
"""Test good latitude with finite values.""" |
|
58
|
|
|
assert_allclose(helpers.checklat([-90 - 1e-5, -90, 0, 90, 90 + 1e-5]), |
|
59
|
|
|
np.array([-90, -90, 0, 90, 90]), rtol=0, atol=1e-8) |
|
60
|
|
|
|
|
61
|
|
|
return |
|
62
|
|
|
|
|
63
|
|
|
|
|
64
|
|
|
def test_checklat_array_withnan(): |
|
65
|
|
|
"""Test good latitude input mixed with NaNs.""" |
|
66
|
|
|
|
|
67
|
|
|
in_lat = np.array([-90 - 1e-5, -90, 0, 90, 90 + 1e-5, np.nan, np.nan]) |
|
68
|
|
|
fin_mask = np.isfinite(in_lat) |
|
69
|
|
|
out_lat = helpers.checklat(in_lat) |
|
70
|
|
|
assert_allclose(np.array([-90, -90, 0, 90, 90]), out_lat[fin_mask], |
|
71
|
|
|
rtol=0, atol=1e-8) |
|
72
|
|
|
|
|
73
|
|
|
assert np.all(np.isnan(out_lat[~fin_mask])) |
|
74
|
|
|
|
|
75
|
|
|
|
|
76
|
|
|
# ============================================================================ |
|
77
|
|
|
# Test getsinIm |
|
78
|
|
|
# ============================================================================ |
|
79
|
|
|
|
|
80
|
|
|
def test_getsinIm_scalar(): |
|
81
|
|
|
assert_allclose(helpers.getsinIm(60), 0.96076892283052284) |
|
82
|
|
|
assert_allclose(helpers.getsinIm(10), 0.33257924500670238) |
|
83
|
|
|
assert type(helpers.getsinIm(60)) != np.ndarray |
|
84
|
|
|
|
|
85
|
|
|
|
|
86
|
|
|
def test_getsinIm_1Darray(): |
|
87
|
|
|
assert_allclose(helpers.getsinIm([60, 10]), |
|
88
|
|
|
[0.96076892283052284, 0.33257924500670238]) |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
|
def test_getsinIm_2Darray(): |
|
92
|
|
|
assert_allclose(helpers.getsinIm([[60, 10], [60, 10]]), |
|
93
|
|
|
[[0.96076892283052284, 0.33257924500670238], |
|
94
|
|
|
[0.96076892283052284, 0.33257924500670238]]) |
|
95
|
|
|
|
|
96
|
|
|
|
|
97
|
|
|
# ============================================================================ |
|
98
|
|
|
# Test getcosIm |
|
99
|
|
|
# ============================================================================ |
|
100
|
|
|
|
|
101
|
|
|
|
|
102
|
|
|
def test_getcosIm_scalar(): |
|
103
|
|
|
assert_allclose(helpers.getcosIm(60), 0.27735009811261463) |
|
104
|
|
|
assert_allclose(helpers.getcosIm(10), 0.94307531289434765) |
|
105
|
|
|
assert type(helpers.getcosIm(60)) != np.ndarray |
|
106
|
|
|
|
|
107
|
|
|
|
|
108
|
|
|
def test_getcosIm_1Darray(): |
|
109
|
|
|
assert_allclose(helpers.getcosIm([60, 10]), |
|
110
|
|
|
[0.27735009811261463, 0.94307531289434765]) |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
def test_getcosIm_2Darray(): |
|
114
|
|
|
assert_allclose(helpers.getcosIm([[60, 10], [60, 10]]), |
|
115
|
|
|
[[0.27735009811261463, 0.94307531289434765], |
|
116
|
|
|
[0.27735009811261463, 0.94307531289434765]]) |
|
117
|
|
|
|
|
118
|
|
|
|
|
119
|
|
|
# ============================================================================ |
|
120
|
|
|
# Test toYearFraction |
|
121
|
|
|
# ============================================================================ |
|
122
|
|
|
|
|
123
|
|
|
|
|
124
|
|
|
def test_toYearFraction(): |
|
125
|
|
|
assert_allclose(helpers.toYearFraction(dt.datetime(2001, 1, 1, 0, 0, 0)), |
|
126
|
|
|
2001) |
|
127
|
|
|
assert_allclose(helpers.toYearFraction(dt.date(2001, 1, 1)), 2001) |
|
128
|
|
|
assert_allclose(helpers.toYearFraction(dt.datetime(2002, 1, 1, 0, 0, 0)), |
|
129
|
|
|
2002) |
|
130
|
|
|
assert_allclose(helpers.toYearFraction(dt.datetime(2005, 2, 3, 4, 5, 6)), |
|
131
|
|
|
2005.090877283105) |
|
132
|
|
|
assert_allclose(helpers.toYearFraction(dt.datetime(2005, 12, 11, 10, 9, 8)), |
|
133
|
|
|
2005.943624682902) |
|
134
|
|
|
|
|
135
|
|
|
|
|
136
|
|
|
# ============================================================================ |
|
137
|
|
|
# Test gc2gdlat |
|
138
|
|
|
# ============================================================================ |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
def test_gc2gdlat(): |
|
142
|
|
|
assert_allclose(helpers.gc2gdlat(0), 0) |
|
143
|
|
|
assert_allclose(helpers.gc2gdlat(90), 90) |
|
144
|
|
|
assert_allclose(helpers.gc2gdlat(30), 30.166923849507356) |
|
145
|
|
|
assert_allclose(helpers.gc2gdlat(60), 60.166364190170931) |
|
146
|
|
|
|
|
147
|
|
|
|
|
148
|
|
|
# ============================================================================ |
|
149
|
|
|
# Test subsol |
|
150
|
|
|
# ============================================================================ |
|
151
|
|
|
|
|
152
|
|
|
def test_subsol(): |
|
153
|
|
|
assert_allclose(helpers.subsol(dt.datetime(2005, 2, 3, 4, 5, 6)), |
|
154
|
|
|
(-16.505391672592904, 122.17768157084515)) |
|
155
|
|
|
assert_allclose(helpers.subsol(dt.datetime(2010, 12, 11, 10, 9, 8)), |
|
156
|
|
|
(-23.001554595838947, 26.008999999955023)) |
|
157
|
|
|
|
|
158
|
|
|
with pytest.raises(ValueError): |
|
159
|
|
|
helpers.subsol(dt.datetime(1600, 12, 31, 23, 59, 59)) |
|
160
|
|
|
assert_allclose(helpers.subsol(dt.datetime(1601, 1, 1, 0, 0, 0)), |
|
161
|
|
|
(-23.06239721771427, -178.90131731228584)) |
|
162
|
|
|
with pytest.raises(ValueError): |
|
163
|
|
|
helpers.subsol(dt.datetime(2101, 1, 1, 0, 0, 0)) |
|
164
|
|
|
assert_allclose(helpers.subsol(dt.datetime(2100, 12, 31, 23, 59, 59)), |
|
165
|
|
|
(-23.021061422069053, -179.23129780639425)) |
|
166
|
|
|
|
|
167
|
|
|
|
|
168
|
|
|
def datetime64_to_datetime(dt64): |
|
169
|
|
|
"""Convert numpy datetime64 object to a datetime datetime object. |
|
170
|
|
|
|
|
171
|
|
|
Notes |
|
172
|
|
|
----- |
|
173
|
|
|
Works outside 32 bit int second range of 1970 |
|
174
|
|
|
|
|
175
|
|
|
""" |
|
176
|
|
|
year_floor = dt64.astype('datetime64[Y]') |
|
177
|
|
|
month_floor = dt64.astype('datetime64[M]') |
|
178
|
|
|
day_floor = dt64.astype('datetime64[D]') |
|
179
|
|
|
year = year_floor.astype(int) + 1970 |
|
180
|
|
|
month = (month_floor - year_floor).astype('timedelta64[M]').astype(int) + 1 |
|
181
|
|
|
day = (day_floor - month_floor).astype('timedelta64[D]').astype(int) + 1 |
|
182
|
|
|
return dt.datetime(year, month, day) |
|
183
|
|
|
|
|
184
|
|
|
|
|
185
|
|
|
def test_subsol_array(): |
|
186
|
|
|
"""Verify subsolar point calculation using an array of np.datetime64. |
|
187
|
|
|
|
|
188
|
|
|
Notes |
|
189
|
|
|
----- |
|
190
|
|
|
Tested by ensuring the array of np.datetime64 is equivalent to converting |
|
191
|
|
|
using single dt.datetime values |
|
192
|
|
|
|
|
193
|
|
|
""" |
|
194
|
|
|
dates = np.arange(np.datetime64("1601"), np.datetime64("2100"), |
|
195
|
|
|
np.timedelta64(100, 'D')).astype('datetime64[s]') |
|
196
|
|
|
sslat, sslon = helpers.subsol(dates) |
|
197
|
|
|
for i, date in enumerate(dates): |
|
198
|
|
|
datetime = datetime64_to_datetime(date) |
|
199
|
|
|
true_sslat, true_sslon = helpers.subsol(datetime) |
|
200
|
|
|
assert sslat[i] == true_sslat |
|
201
|
|
|
assert sslon[i] == true_sslon |
|
202
|
|
|
|
|
203
|
|
|
|
|
204
|
|
|
if __name__ == '__main__': |
|
205
|
|
|
pytest.main() |
|
206
|
|
|
|