1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
"""Test the apexpy.fortranapex class |
3
|
|
|
|
4
|
|
|
Notes |
5
|
|
|
----- |
6
|
|
|
Whenever function outputs are tested against hard-coded numbers, the test |
7
|
|
|
results (numbers) were obtained by running the code that is tested. Therefore, |
8
|
|
|
these tests below only check that nothing changes when refactoring, etc., and |
9
|
|
|
not if the results are actually correct. |
10
|
|
|
|
11
|
|
|
These results are expected to change when IGRF is updated. |
12
|
|
|
|
13
|
|
|
""" |
14
|
|
|
|
15
|
|
|
from numpy.testing import assert_allclose |
16
|
|
|
from importlib import resources |
17
|
|
|
import os |
18
|
|
|
import pytest |
19
|
|
|
|
20
|
|
|
import apexpy |
21
|
|
|
from apexpy import fortranapex as fa |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
class TestFortranApex(object): |
25
|
|
|
"""Test class for the Python-wrapped Fortran functions.""" |
26
|
|
|
|
27
|
|
|
def setup_method(self): |
28
|
|
|
"""Initialize each test.""" |
29
|
|
|
datafile = os.path.join(resources.files(apexpy), 'apexsh.dat') |
30
|
|
|
fa.loadapxsh(datafile, 2000) |
31
|
|
|
|
32
|
|
|
# Set the inputs |
33
|
|
|
self.lat = 60 |
34
|
|
|
self.lon = 15 |
35
|
|
|
self.height = 100 |
36
|
|
|
self.refh = 300 |
37
|
|
|
self.vecflg = 1 |
38
|
|
|
self.precision = 1e-10 |
39
|
|
|
|
40
|
|
|
# Set the output values |
41
|
|
|
self.glat = 50.979549407958984 |
42
|
|
|
self.glon = -66.16891479492188 |
43
|
|
|
self.error = 2.8316469524725107e-06 |
44
|
|
|
self.qlat = 56.531288146972656 |
45
|
|
|
self.qlon = 94.1068344116211 |
46
|
|
|
self.mlat = 55.94841766357422 |
47
|
|
|
self.mlon = 94.1068344116211 |
48
|
|
|
self.f1 = [1.079783, 0.10027137] |
49
|
|
|
self.f2 = [-0.24546318, 0.90718889] |
50
|
|
|
self.fmag = 1.0041800737380981 |
51
|
|
|
self.d1 = [0.9495701, 0.25693053, 0.09049474] |
52
|
|
|
self.d2 = [0.10011087, -1.0780545, -0.33892432] |
53
|
|
|
self.d3 = [0.00865356, 0.27327004, -0.8666646] |
54
|
|
|
self.dmag = 1.100391149520874 |
55
|
|
|
self.e1 = [1.0269295, 0.08382964, 0.03668632] |
56
|
|
|
self.e2 = [0.24740215, -0.82374191, -0.25726584] |
57
|
|
|
self.e3 = [0.01047826, 0.33089194, -1.04941] |
58
|
|
|
self.out = None |
59
|
|
|
self.test_out = None |
60
|
|
|
|
61
|
|
|
def teardown_method(self): |
62
|
|
|
"""Clean environment after each test.""" |
63
|
|
|
del self.lat, self.lon, self.height, self.refh, self.vecflg |
64
|
|
|
del self.qlat, self.qlon, self.mlat, self.mlon, self.f1, self.f2 |
65
|
|
|
del self.fmag, self.d1, self.d2, self.d3, self.dmag, self.e1 |
66
|
|
|
del self.e2, self.e3, self.precision, self.glat, self.glon, self.error |
67
|
|
|
del self.out, self.test_out |
68
|
|
|
|
69
|
|
|
def run_test_evaluation(self, rtol=1e-5, atol=1e-5): |
70
|
|
|
"""Run the evaluation of the test results. |
71
|
|
|
|
72
|
|
|
Parameters |
73
|
|
|
---------- |
74
|
|
|
rtol : float |
75
|
|
|
Relative tolerance, default value based on old code's precision |
76
|
|
|
(default=1e-5) |
77
|
|
|
atol : float |
78
|
|
|
Absolute tolerance, default value based on old code's precision |
79
|
|
|
(default=1e-5) |
80
|
|
|
|
81
|
|
|
""" |
82
|
|
|
|
83
|
|
|
assert self.out is not None, "No results to test" |
84
|
|
|
assert self.test_out is not None, "No 'truth' results provided" |
85
|
|
|
assert len(self.out) == len(self.test_out), "Mismatched outputs" |
86
|
|
|
|
87
|
|
|
for i, out_val in enumerate(self.out): |
88
|
|
|
assert_allclose(out_val, self.test_out[i], rtol=rtol, atol=atol) |
89
|
|
|
return |
90
|
|
|
|
91
|
|
|
def test_apxg2q(self): |
92
|
|
|
"""Test fortran apex geographic to quasi-dipole.""" |
93
|
|
|
# Get the output |
94
|
|
|
self.out = fa.apxg2q(self.lat, self.lon, self.height, self.vecflg) |
95
|
|
|
|
96
|
|
|
# Test the output |
97
|
|
|
self.test_out = (self.qlat, self.qlon, self.f1, self.f2, self.fmag) |
98
|
|
|
self.run_test_evaluation() |
99
|
|
|
return |
100
|
|
|
|
101
|
|
|
def test_apxg2all(self): |
102
|
|
|
"""Test fortran apex geographic to all outputs.""" |
103
|
|
|
# Get the output |
104
|
|
|
self.out = fa.apxg2all(self.lat, self.lon, self.height, self.refh, |
105
|
|
|
self.vecflg) |
106
|
|
|
|
107
|
|
|
# Test the output |
108
|
|
|
self.test_out = (self.qlat, self.qlon, self.mlat, self.mlon, self.f1, |
109
|
|
|
self.f2, self.fmag, self.d1, self.d2, self.d3, |
110
|
|
|
self.dmag, self.e1, self.e2, self.e3) |
111
|
|
|
self.run_test_evaluation() |
112
|
|
|
return |
113
|
|
|
|
114
|
|
|
def test_apxq2g(self): |
115
|
|
|
""" Test fortran quasi-dipole to geographic.""" |
116
|
|
|
# Get the output |
117
|
|
|
self.out = fa.apxq2g(self.lat, self.lon, self.height, self.precision) |
118
|
|
|
|
119
|
|
|
# Test the output |
120
|
|
|
self.test_out = (self.glat, self.glon, self.error) |
121
|
|
|
self.run_test_evaluation() |
122
|
|
|
return |
123
|
|
|
|
124
|
|
|
@pytest.mark.parametrize("lat", [0, 30, 60, 89]) |
125
|
|
|
@pytest.mark.parametrize("lon", [-179, -90, 0, 90, 179]) |
126
|
|
|
def test_g2q2d(self, lat, lon): |
127
|
|
|
""" Test fortran geographic to quasi-dipole and back again. |
128
|
|
|
|
129
|
|
|
Parameters |
130
|
|
|
---------- |
131
|
|
|
lat : int or float |
132
|
|
|
Latitude in degrees N |
133
|
|
|
lon : int or float |
134
|
|
|
Longitude in degrees E |
135
|
|
|
|
136
|
|
|
""" |
137
|
|
|
self.out = fa.apxg2q(lat, lon, self.height, 0) |
138
|
|
|
self.test_out = fa.apxq2g(self.out[0], self.out[1], self.height, |
139
|
|
|
self.precision) |
140
|
|
|
|
141
|
|
|
# Test the results againt the initial input |
142
|
|
|
assert_allclose(self.test_out[0], lat, atol=0.01) |
143
|
|
|
assert_allclose(self.test_out[1], lon, atol=0.01) |
144
|
|
|
|
145
|
|
|
def test_apxq2g_lowprecision(self): |
146
|
|
|
"""Test low precision error value.""" |
147
|
|
|
self.out = fa.apxq2g(self.lat, self.lon, self.height, -1) |
148
|
|
|
|
149
|
|
|
# Test the output |
150
|
|
|
self.test_out = (51.00891876220703, -66.11973571777344, -9999.0) |
151
|
|
|
self.run_test_evaluation() |
152
|
|
|
return |
153
|
|
|
|