1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
"""Classes that make up the core of apexpy.""" |
3
|
|
|
|
4
|
|
|
import datetime as dt |
5
|
|
|
import numpy as np |
6
|
|
|
import os |
7
|
|
|
import warnings |
8
|
|
|
from importlib import resources |
9
|
|
|
|
10
|
|
|
from apexpy import helpers |
11
|
|
|
|
12
|
|
|
# Below try..catch required for autodoc to work on readthedocs |
13
|
|
|
try: |
14
|
|
|
from apexpy import fortranapex as fa |
15
|
|
|
except ImportError as ierr: |
16
|
|
|
warnings.warn("".join(["fortranapex module could not be imported, so ", |
17
|
|
|
"apexpy probably won't work. Make sure you have ", |
18
|
|
|
"a gfortran compiler. Failed with error: ", |
19
|
|
|
str(ierr)])) |
20
|
|
|
|
21
|
|
|
# Make sure invalid warnings are always shown |
22
|
|
|
warnings.filterwarnings('always', message='.*set to NaN where*', |
23
|
|
|
module='apexpy.apex') |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
class ApexHeightError(ValueError): |
27
|
|
|
"""Specialized ValueError definition, to be used when apex height is wrong. |
28
|
|
|
""" |
29
|
|
|
pass |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class Apex(object): |
33
|
|
|
"""Calculates coordinate conversions, field-line mapping, and base vectors. |
34
|
|
|
|
35
|
|
|
Parameters |
36
|
|
|
---------- |
37
|
|
|
date : NoneType, float, :class:`dt.date`, or :class:`dt.datetime`, optional |
38
|
|
|
Determines which IGRF coefficients are used in conversions. Uses |
39
|
|
|
current date as default. If float, use decimal year. If None, uses |
40
|
|
|
current UTC. (default=None) |
41
|
|
|
refh : float, optional |
42
|
|
|
Reference height in km for apex coordinates, the field lines are mapped |
43
|
|
|
to this height. (default=0) |
44
|
|
|
datafile : str or NoneType, optional |
45
|
|
|
Path to custom coefficient file, if None uses `apexsh.dat` file |
46
|
|
|
(default=None) |
47
|
|
|
fortranlib : str or NoneType, optional |
48
|
|
|
Path to Fortran Apex CPython library, if None uses linked library file |
49
|
|
|
(default=None) |
50
|
|
|
|
51
|
|
|
Attributes |
52
|
|
|
---------- |
53
|
|
|
year : float |
54
|
|
|
Decimal year used for the IGRF model |
55
|
|
|
RE : float |
56
|
|
|
Earth radius in km, defaults to mean Earth radius |
57
|
|
|
refh : float |
58
|
|
|
Reference height in km for apex coordinates |
59
|
|
|
datafile : str |
60
|
|
|
Path to coefficient file |
61
|
|
|
fortranlib : str |
62
|
|
|
Path to Fortran Apex CPython library |
63
|
|
|
igrf_fn : str |
64
|
|
|
IGRF coefficient filename |
65
|
|
|
|
66
|
|
|
Notes |
67
|
|
|
----- |
68
|
|
|
The calculations use IGRF-14 with coefficients from 1900 to 2030 [1]_. |
69
|
|
|
|
70
|
|
|
The geodetic reference ellipsoid is WGS84. |
71
|
|
|
|
72
|
|
|
References |
73
|
|
|
---------- |
74
|
|
|
|
75
|
|
|
.. [1] Thébault, E. et al. (2015), International Geomagnetic Reference |
76
|
|
|
Field: the 12th generation, Earth, Planets and Space, 67(1), 79, |
77
|
|
|
:doi:`10.1186/s40623-015-0228-9`. |
78
|
|
|
|
79
|
|
|
""" |
80
|
|
|
|
81
|
|
|
# ------------------------ |
82
|
|
|
# Define the magic methods |
83
|
|
|
|
84
|
|
|
def __init__(self, date=None, refh=0, datafile=None, fortranlib=None): |
85
|
|
|
|
86
|
|
|
self.RE = 6371.009 # Mean Earth radius in km |
87
|
|
|
self.set_refh(refh) # Reference height in km |
88
|
|
|
|
89
|
|
|
if date is None: |
90
|
|
|
self.year = helpers.toYearFraction(dt.datetime.now( |
91
|
|
|
tz=dt.timezone.utc)) |
92
|
|
|
else: |
93
|
|
|
try: |
94
|
|
|
# Convert date/datetime object to decimal year |
95
|
|
|
self.year = helpers.toYearFraction(date) |
96
|
|
|
except AttributeError: |
97
|
|
|
# Failed while finding datetime attribute, so |
98
|
|
|
# date is probably an int or float; use directly |
99
|
|
|
self.year = date |
100
|
|
|
|
101
|
|
|
# If datafile is not specified, use the package default, otherwise |
102
|
|
|
# check that the provided file exists |
103
|
|
|
if datafile is None: |
104
|
|
|
datafile = os.path.join(resources.files(__package__), 'apexsh.dat') |
105
|
|
|
else: |
106
|
|
|
if not os.path.isfile(datafile): |
107
|
|
|
raise IOError('Data file does not exist: {}'.format(datafile)) |
108
|
|
|
|
109
|
|
|
# If fortranlib is not specified, use the package default, otherwise |
110
|
|
|
# check that the provided file exists |
111
|
|
|
if fortranlib is None: |
112
|
|
|
fortranlib = fa.__file__ |
113
|
|
|
else: |
114
|
|
|
if not os.path.isfile(fortranlib): |
115
|
|
|
raise IOError('Fortran library does not exist: {}'.format( |
116
|
|
|
fortranlib)) |
117
|
|
|
|
118
|
|
|
self.datafile = datafile |
119
|
|
|
self.fortranlib = fortranlib |
120
|
|
|
|
121
|
|
|
# Set the IGRF coefficient text file name |
122
|
|
|
self.igrf_fn = os.path.join(resources.files(__package__), |
123
|
|
|
'igrf14coeffs.txt') |
124
|
|
|
|
125
|
|
|
# Update the Fortran epoch using the year defined above |
126
|
|
|
self.set_epoch(self.year) |
127
|
|
|
|
128
|
|
|
# Vectorize the fortran functions |
129
|
|
|
self._geo2qd = np.frompyfunc( |
130
|
|
|
lambda glat, glon, height: fa.apxg2q(glat, (glon + 180) % 360 - 180, |
131
|
|
|
height, 0)[:2], 3, 2) |
132
|
|
|
self._geo2apex = np.frompyfunc( |
133
|
|
|
lambda glat, glon, height: fa.apxg2all(glat, (glon + 180) % 360 |
134
|
|
|
- 180, height, self.refh, |
135
|
|
|
0)[2:4], 3, 2) |
136
|
|
|
self._geo2apexall = np.frompyfunc( |
137
|
|
|
lambda glat, glon, height: fa.apxg2all(glat, (glon + 180) % 360 |
138
|
|
|
- 180, height, self.refh, |
139
|
|
|
1), 3, 14) |
140
|
|
|
self._qd2geo = np.frompyfunc( |
141
|
|
|
lambda qlat, qlon, height, precision: fa.apxq2g(qlat, (qlon + 180) |
142
|
|
|
% 360 - 180, height, |
143
|
|
|
precision), 4, 3) |
144
|
|
|
self._basevec = np.frompyfunc( |
145
|
|
|
lambda glat, glon, height: fa.apxg2q(glat, (glon + 180) % 360 - 180, |
146
|
|
|
height, 1)[2:4], 3, 2) |
147
|
|
|
|
148
|
|
|
# Vectorize other nonvectorized functions |
149
|
|
|
self._apex2qd = np.frompyfunc(self._apex2qd_nonvectorized, 3, 2) |
150
|
|
|
self._qd2apex = np.frompyfunc(self._qd2apex_nonvectorized, 3, 2) |
151
|
|
|
self._get_babs = np.frompyfunc(self._get_babs_nonvectorized, 3, 1) |
152
|
|
|
|
153
|
|
|
return |
154
|
|
|
|
155
|
|
|
def __repr__(self): |
156
|
|
|
"""Produce an evaluatable representation of the Apex class.""" |
157
|
|
|
rstr = "".join(["apexpy.Apex(date=", self.year.__repr__(), ", refh=", |
158
|
|
|
self.refh.__repr__(), ", datafile=", |
159
|
|
|
self.datafile.__repr__(), ", fortranlib=", |
160
|
|
|
self.fortranlib.__repr__(), ")"]) |
161
|
|
|
|
162
|
|
|
return rstr |
163
|
|
|
|
164
|
|
|
def __str__(self): |
165
|
|
|
"""Produce a user-friendly representation of the Apex class.""" |
166
|
|
|
|
167
|
|
|
out_str = '\n'.join(["Apex class conversions performed with", |
168
|
|
|
"-------------------------------------", |
169
|
|
|
"Decimal year: {:.8f}".format(self.year), |
170
|
|
|
"Reference height: {:.3f} km".format(self.refh), |
171
|
|
|
"Earth radius: {:.3f} km".format(self.RE), '', |
172
|
|
|
"Coefficient file: '{:s}'".format(self.datafile), |
173
|
|
|
"Cython Fortran library: '{:s}'".format( |
174
|
|
|
self.fortranlib)]) |
175
|
|
|
return out_str |
176
|
|
|
|
177
|
|
|
def __eq__(self, comp_obj): |
178
|
|
|
"""Performs equivalency evaluation. |
179
|
|
|
|
180
|
|
|
Parameters |
181
|
|
|
---------- |
182
|
|
|
comp_obj |
183
|
|
|
Object of any time to be compared to the class object |
184
|
|
|
|
185
|
|
|
Returns |
186
|
|
|
------- |
187
|
|
|
bool or NotImplemented |
188
|
|
|
True if self and comp_obj are identical, False if they are not, |
189
|
|
|
and NotImplemented if the classes are not the same |
190
|
|
|
|
191
|
|
|
""" |
192
|
|
|
|
193
|
|
|
if isinstance(comp_obj, self.__class__): |
194
|
|
|
# Objects are the same if all the attributes are the same |
195
|
|
|
for apex_attr in ['year', 'refh', 'RE', 'datafile', 'fortranlib', |
196
|
|
|
'igrf_fn']: |
197
|
|
|
bad_attr = False |
198
|
|
|
if hasattr(self, apex_attr): |
199
|
|
|
aval = getattr(self, apex_attr) |
200
|
|
|
|
201
|
|
|
if hasattr(comp_obj, apex_attr): |
202
|
|
|
cval = getattr(comp_obj, apex_attr) |
203
|
|
|
|
204
|
|
|
if cval != aval: |
205
|
|
|
# Not equal, as the attribute values differ |
206
|
|
|
bad_attr = True |
207
|
|
|
else: |
208
|
|
|
# The comparison object is missing an attribute |
209
|
|
|
bad_attr = True |
210
|
|
|
else: |
211
|
|
|
if hasattr(comp_obj, apex_attr): |
212
|
|
|
# The current object is missing an attribute |
213
|
|
|
bad_attr = True |
214
|
|
|
|
215
|
|
|
if bad_attr: |
216
|
|
|
return False |
217
|
|
|
|
218
|
|
|
# If we arrive here, all expected attributes exist in both classes |
219
|
|
|
# and have the same values |
220
|
|
|
return True |
221
|
|
|
|
222
|
|
|
return NotImplemented |
223
|
|
|
|
224
|
|
|
# ------------------------- |
225
|
|
|
# Define the hidden methods |
226
|
|
|
|
227
|
|
View Code Duplication |
def _apex2qd_nonvectorized(self, alat, alon, height): |
|
|
|
|
228
|
|
|
"""Convert from apex to quasi-dipole (not-vectorised) |
229
|
|
|
|
230
|
|
|
Parameters |
231
|
|
|
----------- |
232
|
|
|
alat : (float) |
233
|
|
|
Apex latitude in degrees |
234
|
|
|
alon : (float) |
235
|
|
|
Apex longitude in degrees |
236
|
|
|
height : (float) |
237
|
|
|
Height in km |
238
|
|
|
|
239
|
|
|
Returns |
240
|
|
|
--------- |
241
|
|
|
qlat : (float) |
242
|
|
|
Quasi-dipole latitude in degrees |
243
|
|
|
qlon : (float) |
244
|
|
|
Quasi-diplole longitude in degrees |
245
|
|
|
|
246
|
|
|
""" |
247
|
|
|
# Evaluate the latitude |
248
|
|
|
alat = helpers.checklat(alat, name='alat') |
249
|
|
|
|
250
|
|
|
# Convert modified apex to quasi-dipole, longitude is the same |
251
|
|
|
qlon = alon |
252
|
|
|
|
253
|
|
|
# Get the apex height |
254
|
|
|
h_apex = self.get_apex(alat) |
255
|
|
|
|
256
|
|
|
if h_apex < height: |
257
|
|
|
if np.isclose(h_apex, height, rtol=0, atol=1e-5): |
258
|
|
|
# Allow for values that are close |
259
|
|
|
h_apex = height |
260
|
|
|
else: |
261
|
|
|
estr = ''.join(['height {:.3g} is > '.format(np.max(height)), |
262
|
|
|
'apex height {:.3g} for alat {:.3g}'.format( |
263
|
|
|
h_apex, alat)]) |
264
|
|
|
raise ApexHeightError(estr) |
265
|
|
|
|
266
|
|
|
# Convert the latitude |
267
|
|
|
salat = np.sign(alat) if alat != 0 else 1 |
268
|
|
|
qlat = salat * np.degrees(np.arccos(np.sqrt((self.RE + height) |
269
|
|
|
/ (self.RE + h_apex)))) |
270
|
|
|
|
271
|
|
|
return qlat, qlon |
272
|
|
|
|
273
|
|
View Code Duplication |
def _qd2apex_nonvectorized(self, qlat, qlon, height): |
|
|
|
|
274
|
|
|
"""Converts quasi-dipole to modified apex coordinates. |
275
|
|
|
|
276
|
|
|
Parameters |
277
|
|
|
---------- |
278
|
|
|
qlat : float |
279
|
|
|
Quasi-dipole latitude |
280
|
|
|
qlon : float |
281
|
|
|
Quasi-dipole longitude |
282
|
|
|
height : float |
283
|
|
|
Altitude in km |
284
|
|
|
|
285
|
|
|
Returns |
286
|
|
|
------- |
287
|
|
|
alat : float |
288
|
|
|
Modified apex latitude |
289
|
|
|
alon : float |
290
|
|
|
Modified apex longitude |
291
|
|
|
|
292
|
|
|
Raises |
293
|
|
|
------ |
294
|
|
|
ApexHeightError |
295
|
|
|
if apex height < reference height |
296
|
|
|
|
297
|
|
|
""" |
298
|
|
|
# Evaluate the latitude |
299
|
|
|
qlat = helpers.checklat(qlat, name='qlat') |
300
|
|
|
|
301
|
|
|
# Get the longitude and apex height |
302
|
|
|
alon = qlon |
303
|
|
|
h_apex = self.get_apex(qlat, height) |
304
|
|
|
|
305
|
|
|
if h_apex < self.refh: |
306
|
|
|
if np.isclose(h_apex, self.refh, rtol=0, atol=1e-5): |
307
|
|
|
# Allow for values that are close |
308
|
|
|
h_apex = self.refh |
309
|
|
|
else: |
310
|
|
|
estr = ''.join(['apex height ({:.3g}) is < '.format(h_apex), |
311
|
|
|
'reference height ({:.3g})'.format(self.refh), |
312
|
|
|
' for qlat {:.3g}'.format(qlat)]) |
313
|
|
|
raise ApexHeightError(estr) |
314
|
|
|
|
315
|
|
|
# Convert the latitude |
316
|
|
|
sqlat = np.sign(qlat) if qlat != 0 else 1 |
317
|
|
|
alat = sqlat * np.degrees(np.arccos(np.sqrt((self.RE + self.refh) |
318
|
|
|
/ (self.RE + h_apex)))) |
319
|
|
|
|
320
|
|
|
return alat, alon |
321
|
|
|
|
322
|
|
|
def _map_EV_to_height(self, alat, alon, height, newheight, data, ev_flag): |
323
|
|
|
"""Maps electric field related values to a desired height |
324
|
|
|
|
325
|
|
|
Parameters |
326
|
|
|
---------- |
327
|
|
|
alat : array-like |
328
|
|
|
Apex latitude in degrees. |
329
|
|
|
alon : array-like |
330
|
|
|
Apex longitude in degrees. |
331
|
|
|
height : array-like |
332
|
|
|
Current altitude in km. |
333
|
|
|
new_height : array-like |
334
|
|
|
Desired altitude to which EV values will be mapped in km. |
335
|
|
|
data : array-like |
336
|
|
|
3D value(s) for the electric field or electric drift |
337
|
|
|
ev_flag : str |
338
|
|
|
Specify if value is an electric field ('E') or electric drift ('V') |
339
|
|
|
|
340
|
|
|
Returns |
341
|
|
|
------- |
342
|
|
|
data_mapped : array-like |
343
|
|
|
Data mapped along the magnetic field from the old height to the |
344
|
|
|
new height. |
345
|
|
|
|
346
|
|
|
Raises |
347
|
|
|
------ |
348
|
|
|
ValueError |
349
|
|
|
If an unknown `ev_flag` or badly shaped data input is supplied. |
350
|
|
|
|
351
|
|
|
""" |
352
|
|
|
# Ensure the E-V flag is correct |
353
|
|
|
ev_flag = ev_flag.upper() |
354
|
|
|
if ev_flag not in ['E', 'V']: |
355
|
|
|
raise ValueError('unknown electric field/drift flag') |
356
|
|
|
|
357
|
|
|
# Make sure data is array of correct shape |
358
|
|
|
if not (np.ndim(data) == 1 |
359
|
|
|
and np.size(data) == 3) and not (np.ndim(data) == 2 |
360
|
|
|
and np.shape(data)[0] == 3): |
361
|
|
|
# Raise ValueError because if passing e.g. a (6,) ndarray the |
362
|
|
|
# reshape below will work even though the input is invalid |
363
|
|
|
raise ValueError('{:} must be (3, N) or (3,) ndarray'.format( |
364
|
|
|
ev_flag)) |
365
|
|
|
|
366
|
|
|
data = np.reshape(data, (3, np.size(data) // 3)) |
367
|
|
|
|
368
|
|
|
# Get the necessary base vectors at the current and new height |
369
|
|
|
v1 = list() |
370
|
|
|
v2 = list() |
371
|
|
|
for i, alt in enumerate([height, newheight]): |
372
|
|
|
_, _, _, _, _, _, d1, d2, _, e1, e2, _ = self.basevectors_apex( |
373
|
|
|
alat, alon, alt, coords='apex') |
374
|
|
|
|
375
|
|
|
if ev_flag == 'E' and i == 0 or ev_flag == 'V' and i == 1: |
376
|
|
|
v1.append(e1) |
377
|
|
|
v2.append(e2) |
378
|
|
|
else: |
379
|
|
|
v1.append(d1) |
380
|
|
|
v2.append(d2) |
381
|
|
|
|
382
|
|
|
# Make sure v1 and v2 have shape (3, N) |
383
|
|
|
v1[-1] = np.reshape(v1[-1], (3, v1[-1].size // 3)) |
384
|
|
|
v2[-1] = np.reshape(v2[-1], (3, v2[-1].size // 3)) |
385
|
|
|
|
386
|
|
|
# Take the dot product between the data value and each base vector |
387
|
|
|
# at the current height |
388
|
|
|
data1 = np.sum(data * v1[0], axis=0) |
389
|
|
|
data2 = np.sum(data * v2[0], axis=0) |
390
|
|
|
|
391
|
|
|
# Map the data to the new height, removing any axes of length 1 |
392
|
|
|
# after the calculation |
393
|
|
|
data_mapped = np.squeeze(data1[np.newaxis, :] * v1[1] |
394
|
|
|
+ data2[np.newaxis, :] * v2[1]) |
395
|
|
|
|
396
|
|
|
return data_mapped |
397
|
|
|
|
398
|
|
|
def _get_babs_nonvectorized(self, glat, glon, height): |
399
|
|
|
"""Get the absolute value of the B-field in Tesla |
400
|
|
|
|
401
|
|
|
Parameters |
402
|
|
|
---------- |
403
|
|
|
glat : float |
404
|
|
|
Geodetic latitude in degrees |
405
|
|
|
glon : float |
406
|
|
|
Geodetic longitude in degrees |
407
|
|
|
height : float |
408
|
|
|
Altitude in km |
409
|
|
|
|
410
|
|
|
Returns |
411
|
|
|
------- |
412
|
|
|
babs : float |
413
|
|
|
Absolute value of the magnetic field in Tesla |
414
|
|
|
|
415
|
|
|
""" |
416
|
|
|
# Evaluate the latitude |
417
|
|
|
glat = helpers.checklat(glat, name='qlat') |
418
|
|
|
|
419
|
|
|
# Get the magnetic field output: North, East, Down, Absolute value |
420
|
|
|
bout = fa.feldg(1, glat, glon, height) |
421
|
|
|
|
422
|
|
|
# Convert the absolute value from Gauss to Tesla |
423
|
|
|
babs = bout[-1] / 10000.0 |
424
|
|
|
|
425
|
|
|
return babs |
426
|
|
|
|
427
|
|
|
# ----------------------- |
428
|
|
|
# Define the user methods |
429
|
|
|
|
430
|
|
|
def convert(self, lat, lon, source, dest, height=0, datetime=None, |
431
|
|
|
precision=1e-10, ssheight=50 * 6371): |
432
|
|
|
"""Converts between geodetic, modified apex, quasi-dipole and MLT. |
433
|
|
|
|
434
|
|
|
Parameters |
435
|
|
|
---------- |
436
|
|
|
lat : array_like |
437
|
|
|
Latitude in degrees |
438
|
|
|
lon : array_like |
439
|
|
|
Longitude in degrees or MLT in hours |
440
|
|
|
source : str |
441
|
|
|
Input coordinate system, accepts 'geo', 'apex', 'qd', or 'mlt' |
442
|
|
|
dest : str |
443
|
|
|
Output coordinate system, accepts 'geo', 'apex', 'qd', or 'mlt' |
444
|
|
|
height : array_like, optional |
445
|
|
|
Altitude in km |
446
|
|
|
datetime : :class:`datetime.datetime` |
447
|
|
|
Date and time for MLT conversions (required for MLT conversions) |
448
|
|
|
precision : float, optional |
449
|
|
|
Precision of output (degrees) when converting to geo. A negative |
450
|
|
|
value of this argument produces a low-precision calculation of |
451
|
|
|
geodetic lat/lon based only on their spherical harmonic |
452
|
|
|
representation. |
453
|
|
|
A positive value causes the underlying Fortran routine to iterate |
454
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
455
|
|
|
the input QD lat/lon to within the specified precision (all |
456
|
|
|
coordinates being converted to geo are converted to QD first and |
457
|
|
|
passed through APXG2Q). |
458
|
|
|
ssheight : float, optional |
459
|
|
|
Altitude in km to use for converting the subsolar point from |
460
|
|
|
geographic to magnetic coordinates. A high altitude is used |
461
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
462
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
463
|
|
|
|
464
|
|
|
Returns |
465
|
|
|
------- |
466
|
|
|
lat : ndarray or float |
467
|
|
|
Converted latitude (if converting to MLT, output latitude is apex) |
468
|
|
|
lon : ndarray or float |
469
|
|
|
Converted longitude or MLT |
470
|
|
|
|
471
|
|
|
Raises |
472
|
|
|
------ |
473
|
|
|
ValueError |
474
|
|
|
For unknown source or destination coordinate system or a missing |
475
|
|
|
or badly formed latitude or datetime input |
476
|
|
|
|
477
|
|
|
""" |
478
|
|
|
# Test the input values |
479
|
|
|
source = source.lower() |
480
|
|
|
dest = dest.lower() |
481
|
|
|
|
482
|
|
|
if source not in ['geo', 'apex', 'qd', 'mlt'] \ |
483
|
|
|
or dest not in ['geo', 'apex', 'qd', 'mlt']: |
484
|
|
|
estr = 'Unknown coordinate transformation: {} -> {}'.format(source, |
485
|
|
|
dest) |
486
|
|
|
raise ValueError(estr) |
487
|
|
|
|
488
|
|
|
if datetime is None and ('mlt' in [source, dest]): |
489
|
|
|
raise ValueError('datetime must be given for MLT calculations') |
490
|
|
|
|
491
|
|
|
lat = helpers.checklat(lat) |
492
|
|
|
|
493
|
|
|
if source == dest: |
494
|
|
|
# The source and destination are the same, no conversion necessary |
495
|
|
|
return lat, lon |
496
|
|
|
else: |
497
|
|
|
# Select the correct conversion method |
498
|
|
|
if source == 'geo': |
499
|
|
|
if dest == 'qd': |
500
|
|
|
lat, lon = self.geo2qd(lat, lon, height) |
501
|
|
|
else: |
502
|
|
|
lat, lon = self.geo2apex(lat, lon, height) |
503
|
|
|
if dest == 'mlt': |
504
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
505
|
|
|
elif source == 'apex': |
506
|
|
|
if dest == 'geo': |
507
|
|
|
lat, lon, _ = self.apex2geo(lat, lon, height, |
508
|
|
|
precision=precision) |
509
|
|
|
elif dest == 'qd': |
510
|
|
|
lat, lon = self.apex2qd(lat, lon, height=height) |
511
|
|
|
elif dest == 'mlt': |
512
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
513
|
|
|
elif source == 'qd': |
514
|
|
|
if dest == 'geo': |
515
|
|
|
lat, lon, _ = self.qd2geo(lat, lon, height, |
516
|
|
|
precision=precision) |
517
|
|
|
else: |
518
|
|
|
lat, lon = self.qd2apex(lat, lon, height=height) |
519
|
|
|
if dest == 'mlt': |
520
|
|
|
lon = self.mlon2mlt(lon, datetime, ssheight=ssheight) |
521
|
|
|
elif source == 'mlt': |
522
|
|
|
# From MLT means that the input latitude is assumed to be apex, |
523
|
|
|
# so we don't need to update latitude for apex conversions. |
524
|
|
|
lon = self.mlt2mlon(lon, datetime, ssheight=ssheight) |
525
|
|
|
if dest == 'geo': |
526
|
|
|
lat, lon, _ = self.apex2geo(lat, lon, height, |
527
|
|
|
precision=precision) |
528
|
|
|
elif dest == 'qd': |
529
|
|
|
lat, lon = self.apex2qd(lat, lon, height=height) |
530
|
|
|
|
531
|
|
|
return lat, lon |
532
|
|
|
|
533
|
|
|
def geo2apex(self, glat, glon, height): |
534
|
|
|
"""Converts geodetic to modified apex coordinates. |
535
|
|
|
|
536
|
|
|
Parameters |
537
|
|
|
---------- |
538
|
|
|
glat : array_like |
539
|
|
|
Geodetic latitude |
540
|
|
|
glon : array_like |
541
|
|
|
Geodetic longitude |
542
|
|
|
height : array_like |
543
|
|
|
Altitude in km |
544
|
|
|
|
545
|
|
|
Returns |
546
|
|
|
------- |
547
|
|
|
alat : ndarray or float |
548
|
|
|
Modified apex latitude |
549
|
|
|
alon : ndarray or float |
550
|
|
|
Modified apex longitude |
551
|
|
|
|
552
|
|
|
""" |
553
|
|
|
|
554
|
|
|
glat = helpers.checklat(glat, name='glat') |
555
|
|
|
|
556
|
|
|
alat, alon = self._geo2apex(glat, glon, height) |
557
|
|
|
|
558
|
|
|
if np.any(alat == -9999): |
559
|
|
|
warnings.warn(''.join(['Apex latitude set to NaN where undefined ', |
560
|
|
|
'(apex height may be < reference height)'])) |
561
|
|
|
if np.isscalar(alat): |
562
|
|
|
alat = np.nan |
563
|
|
|
else: |
564
|
|
|
alat[alat == -9999] = np.nan |
565
|
|
|
|
566
|
|
|
# If array is returned, dtype is object, so convert to float |
567
|
|
|
alat = helpers.set_array_float(alat) |
568
|
|
|
alon = helpers.set_array_float(alon) |
569
|
|
|
|
570
|
|
|
return alat, alon |
571
|
|
|
|
572
|
|
|
def apex2geo(self, alat, alon, height, precision=1e-10): |
573
|
|
|
"""Converts modified apex to geodetic coordinates. |
574
|
|
|
|
575
|
|
|
Parameters |
576
|
|
|
---------- |
577
|
|
|
alat : array_like |
578
|
|
|
Modified apex latitude |
579
|
|
|
alon : array_like |
580
|
|
|
Modified apex longitude |
581
|
|
|
height : array_like |
582
|
|
|
Altitude in km |
583
|
|
|
precision : float, optional |
584
|
|
|
Precision of output (degrees). A negative value of this argument |
585
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
586
|
|
|
on their spherical harmonic representation. A positive value causes |
587
|
|
|
the underlying Fortran routine to iterate until feeding the output |
588
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
589
|
|
|
within the specified precision. |
590
|
|
|
|
591
|
|
|
Returns |
592
|
|
|
------- |
593
|
|
|
glat : ndarray or float |
594
|
|
|
Geodetic latitude |
595
|
|
|
glon : ndarray or float |
596
|
|
|
Geodetic longitude |
597
|
|
|
error : ndarray or float |
598
|
|
|
The angular difference (degrees) between the input QD coordinates |
599
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
600
|
|
|
into geo2qd (APXG2Q) |
601
|
|
|
|
602
|
|
|
""" |
603
|
|
|
# Evaluate the latitude |
604
|
|
|
alat = helpers.checklat(alat, name='alat') |
605
|
|
|
|
606
|
|
|
# Perform the two-step convertion to geodetic coordinates |
607
|
|
|
qlat, qlon = self.apex2qd(alat, alon, height=height) |
608
|
|
|
glat, glon, error = self.qd2geo(qlat, qlon, height, precision=precision) |
609
|
|
|
|
610
|
|
|
return glat, glon, error |
611
|
|
|
|
612
|
|
|
def geo2qd(self, glat, glon, height): |
613
|
|
|
"""Converts geodetic to quasi-dipole coordinates. |
614
|
|
|
|
615
|
|
|
Parameters |
616
|
|
|
---------- |
617
|
|
|
glat : array_like |
618
|
|
|
Geodetic latitude |
619
|
|
|
glon : array_like |
620
|
|
|
Geodetic longitude |
621
|
|
|
height : array_like |
622
|
|
|
Altitude in km |
623
|
|
|
|
624
|
|
|
Returns |
625
|
|
|
------- |
626
|
|
|
qlat : ndarray or float |
627
|
|
|
Quasi-dipole latitude |
628
|
|
|
qlon : ndarray or float |
629
|
|
|
Quasi-dipole longitude |
630
|
|
|
|
631
|
|
|
""" |
632
|
|
|
# Evaluate the latitude |
633
|
|
|
glat = helpers.checklat(glat, name='glat') |
634
|
|
|
|
635
|
|
|
# Convert to quasi-dipole coordinates |
636
|
|
|
qlat, qlon = self._geo2qd(glat, glon, height) |
637
|
|
|
|
638
|
|
|
# If array is returned, dtype is object, so convert to float |
639
|
|
|
qlat = helpers.set_array_float(qlat) |
640
|
|
|
qlon = helpers.set_array_float(qlon) |
641
|
|
|
|
642
|
|
|
return qlat, qlon |
643
|
|
|
|
644
|
|
|
def qd2geo(self, qlat, qlon, height, precision=1e-10): |
645
|
|
|
"""Converts quasi-dipole to geodetic coordinates. |
646
|
|
|
|
647
|
|
|
Parameters |
648
|
|
|
---------- |
649
|
|
|
qlat : array_like |
650
|
|
|
Quasi-dipole latitude |
651
|
|
|
qlon : array_like |
652
|
|
|
Quasi-dipole longitude |
653
|
|
|
height : array_like |
654
|
|
|
Altitude in km |
655
|
|
|
precision : float, optional |
656
|
|
|
Precision of output (degrees). A negative value of this argument |
657
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
658
|
|
|
on their spherical harmonic representation. A positive value causes |
659
|
|
|
the underlying Fortran routine to iterate until feeding the output |
660
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
661
|
|
|
within the specified precision. |
662
|
|
|
|
663
|
|
|
Returns |
664
|
|
|
------- |
665
|
|
|
glat : ndarray or float |
666
|
|
|
Geodetic latitude |
667
|
|
|
glon : ndarray or float |
668
|
|
|
Geodetic longitude |
669
|
|
|
error : ndarray or float |
670
|
|
|
The angular difference (degrees) between the input QD coordinates |
671
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
672
|
|
|
into geo2qd (APXG2Q) |
673
|
|
|
|
674
|
|
|
""" |
675
|
|
|
# Evaluate the latitude |
676
|
|
|
qlat = helpers.checklat(qlat, name='qlat') |
677
|
|
|
|
678
|
|
|
# Convert to geodetic coordinates |
679
|
|
|
glat, glon, error = self._qd2geo(qlat, qlon, height, precision) |
680
|
|
|
|
681
|
|
|
# If array is returned, dtype is object, so convert to float |
682
|
|
|
glat = helpers.set_array_float(glat) |
683
|
|
|
glon = helpers.set_array_float(glon) |
684
|
|
|
error = helpers.set_array_float(error) |
685
|
|
|
|
686
|
|
|
return glat, glon, error |
687
|
|
|
|
688
|
|
|
def apex2qd(self, alat, alon, height): |
689
|
|
|
"""Converts modified apex to quasi-dipole coordinates. |
690
|
|
|
|
691
|
|
|
Parameters |
692
|
|
|
---------- |
693
|
|
|
alat : array_like |
694
|
|
|
Modified apex latitude |
695
|
|
|
alon : array_like |
696
|
|
|
Modified apex longitude |
697
|
|
|
height : array_like |
698
|
|
|
Altitude in km |
699
|
|
|
|
700
|
|
|
Returns |
701
|
|
|
------- |
702
|
|
|
qlat : ndarray or float |
703
|
|
|
Quasi-dipole latitude |
704
|
|
|
qlon : ndarray or float |
705
|
|
|
Quasi-dipole longitude |
706
|
|
|
|
707
|
|
|
Raises |
708
|
|
|
------ |
709
|
|
|
ApexHeightError |
710
|
|
|
if `height` > apex height |
711
|
|
|
|
712
|
|
|
""" |
713
|
|
|
# Convert the latitude to apex, latitude check performed in the |
714
|
|
|
# hidden method |
715
|
|
|
qlat, qlon = self._apex2qd(alat, alon, height) |
716
|
|
|
|
717
|
|
|
# If array is returned, the dtype is object, so convert to float |
718
|
|
|
qlat = helpers.set_array_float(qlat) |
719
|
|
|
qlon = helpers.set_array_float(qlon) |
720
|
|
|
|
721
|
|
|
return qlat, qlon |
722
|
|
|
|
723
|
|
|
def qd2apex(self, qlat, qlon, height): |
724
|
|
|
"""Converts quasi-dipole to modified apex coordinates. |
725
|
|
|
|
726
|
|
|
Parameters |
727
|
|
|
---------- |
728
|
|
|
qlat : array_like |
729
|
|
|
Quasi-dipole latitude |
730
|
|
|
qlon : array_like |
731
|
|
|
Quasi-dipole longitude |
732
|
|
|
height : array_like |
733
|
|
|
Altitude in km |
734
|
|
|
|
735
|
|
|
Returns |
736
|
|
|
------- |
737
|
|
|
alat : ndarray or float |
738
|
|
|
Modified apex latitude |
739
|
|
|
alon : ndarray or float |
740
|
|
|
Modified apex longitude |
741
|
|
|
|
742
|
|
|
Raises |
743
|
|
|
------ |
744
|
|
|
ApexHeightError |
745
|
|
|
if apex height < reference height |
746
|
|
|
|
747
|
|
|
""" |
748
|
|
|
# Perform the conversion from quasi-dipole to apex coordinates |
749
|
|
|
alat, alon = self._qd2apex(qlat, qlon, height) |
750
|
|
|
|
751
|
|
|
# If array is returned, the dtype is object, so convert to float |
752
|
|
|
alat = helpers.set_array_float(alat) |
753
|
|
|
alon = helpers.set_array_float(alon) |
754
|
|
|
|
755
|
|
|
return alat, alon |
756
|
|
|
|
757
|
|
View Code Duplication |
def mlon2mlt(self, mlon, dtime, ssheight=318550): |
|
|
|
|
758
|
|
|
"""Computes the magnetic local time at the specified magnetic longitude |
759
|
|
|
and UT. |
760
|
|
|
|
761
|
|
|
Parameters |
762
|
|
|
---------- |
763
|
|
|
mlon : array_like |
764
|
|
|
Magnetic longitude (apex and quasi-dipole longitude are always |
765
|
|
|
equal) |
766
|
|
|
dtime : :class:`datetime.datetime` |
767
|
|
|
Date and time |
768
|
|
|
ssheight : float, optional |
769
|
|
|
Altitude in km to use for converting the subsolar point from |
770
|
|
|
geographic to magnetic coordinates. A high altitude is used |
771
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
772
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
773
|
|
|
The current default is 50 * 6371, roughly 50 RE. (default=318550) |
774
|
|
|
|
775
|
|
|
Returns |
776
|
|
|
------- |
777
|
|
|
mlt : ndarray or float |
778
|
|
|
Magnetic local time in hours [0, 24) |
779
|
|
|
|
780
|
|
|
Notes |
781
|
|
|
----- |
782
|
|
|
To compute the MLT, we find the apex longitude of the subsolar point at |
783
|
|
|
the given time. Then the MLT of the given point will be computed from |
784
|
|
|
the separation in magnetic longitude from this point (1 hour = 15 |
785
|
|
|
degrees). |
786
|
|
|
|
787
|
|
|
""" |
788
|
|
|
# Get the subsolar location |
789
|
|
|
ssglat, ssglon = helpers.subsol(dtime) |
790
|
|
|
|
791
|
|
|
# Convert the subsolar location to apex coordinates |
792
|
|
|
_, ssalon = self.geo2apex(ssglat, ssglon, ssheight) |
793
|
|
|
|
794
|
|
|
# Calculate the magnetic local time (0-24 h range) from apex longitude. |
795
|
|
|
# Ensure lists are converted to arrays |
796
|
|
|
mlt = (180 + np.asarray(mlon) - ssalon) / 15 % 24 |
797
|
|
|
|
798
|
|
|
if mlt.shape == (): |
799
|
|
|
mlt = np.float64(mlt) |
800
|
|
|
|
801
|
|
|
return mlt |
802
|
|
|
|
803
|
|
View Code Duplication |
def mlt2mlon(self, mlt, dtime, ssheight=318550): |
|
|
|
|
804
|
|
|
"""Computes the magnetic longitude at the specified MLT and UT. |
805
|
|
|
|
806
|
|
|
Parameters |
807
|
|
|
---------- |
808
|
|
|
mlt : array_like |
809
|
|
|
Magnetic local time |
810
|
|
|
dtime : :class:`datetime.datetime` |
811
|
|
|
Date and time |
812
|
|
|
ssheight : float, optional |
813
|
|
|
Altitude in km to use for converting the subsolar point from |
814
|
|
|
geographic to magnetic coordinates. A high altitude is used |
815
|
|
|
to ensure the subsolar point is mapped to high latitudes, which |
816
|
|
|
prevents the South-Atlantic Anomaly (SAA) from influencing the MLT. |
817
|
|
|
The current default is 50 * 6371, roughly 50 RE. (default=318550) |
818
|
|
|
|
819
|
|
|
Returns |
820
|
|
|
------- |
821
|
|
|
mlon : ndarray or float |
822
|
|
|
Magnetic longitude [0, 360) (apex and quasi-dipole longitude are |
823
|
|
|
always equal) |
824
|
|
|
|
825
|
|
|
Notes |
826
|
|
|
----- |
827
|
|
|
To compute the magnetic longitude, we find the apex longitude of the |
828
|
|
|
subsolar point at the given time. Then the magnetic longitude of the |
829
|
|
|
given point will be computed from the separation in magnetic local time |
830
|
|
|
from this point (1 hour = 15 degrees). |
831
|
|
|
""" |
832
|
|
|
# Get the location of the subsolar point at this time |
833
|
|
|
ssglat, ssglon = helpers.subsol(dtime) |
834
|
|
|
|
835
|
|
|
# Convert the location of the subsolar point to apex coordinates |
836
|
|
|
_, ssalon = self.geo2apex(ssglat, ssglon, ssheight) |
837
|
|
|
|
838
|
|
|
# Calculate the magnetic longitude (0-360 h range) from MLT. |
839
|
|
|
# Ensure lists are converted to arrays |
840
|
|
|
mlon = (15 * np.asarray(mlt) - 180 + ssalon + 360) % 360 |
841
|
|
|
|
842
|
|
|
if mlon.shape == (): |
843
|
|
|
mlon = np.float64(mlon) |
844
|
|
|
|
845
|
|
|
return mlon |
846
|
|
|
|
847
|
|
|
def map_to_height(self, glat, glon, height, newheight, conjugate=False, |
848
|
|
|
precision=1e-10): |
849
|
|
|
"""Performs mapping of points along the magnetic field to the closest |
850
|
|
|
or conjugate hemisphere. |
851
|
|
|
|
852
|
|
|
Parameters |
853
|
|
|
---------- |
854
|
|
|
glat : array_like |
855
|
|
|
Geodetic latitude |
856
|
|
|
glon : array_like |
857
|
|
|
Geodetic longitude |
858
|
|
|
height : array_like |
859
|
|
|
Source altitude in km |
860
|
|
|
newheight : array_like |
861
|
|
|
Destination altitude in km |
862
|
|
|
conjugate : bool, optional |
863
|
|
|
Map to `newheight` in the conjugate hemisphere instead of the |
864
|
|
|
closest hemisphere |
865
|
|
|
precision : float, optional |
866
|
|
|
Precision of output (degrees). A negative value of this argument |
867
|
|
|
produces a low-precision calculation of geodetic lat/lon based only |
868
|
|
|
on their spherical harmonic representation. A positive value causes |
869
|
|
|
the underlying Fortran routine to iterate until feeding the output |
870
|
|
|
geo lat/lon into geo2qd (APXG2Q) reproduces the input QD lat/lon to |
871
|
|
|
within the specified precision. |
872
|
|
|
|
873
|
|
|
Returns |
874
|
|
|
------- |
875
|
|
|
newglat : ndarray or float |
876
|
|
|
Geodetic latitude of mapped point |
877
|
|
|
newglon : ndarray or float |
878
|
|
|
Geodetic longitude of mapped point |
879
|
|
|
error : ndarray or float |
880
|
|
|
The angular difference (degrees) between the input QD coordinates |
881
|
|
|
and the qlat/qlon produced by feeding the output glat and glon |
882
|
|
|
into geo2qd (APXG2Q) |
883
|
|
|
|
884
|
|
|
Notes |
885
|
|
|
----- |
886
|
|
|
The mapping is done by converting glat/glon/height to modified apex |
887
|
|
|
lat/lon, and converting back to geographic using newheight (if |
888
|
|
|
conjugate, use negative apex latitude when converting back) |
889
|
|
|
|
890
|
|
|
""" |
891
|
|
|
|
892
|
|
|
alat, alon = self.geo2apex(glat, glon, height) |
893
|
|
|
if conjugate: |
894
|
|
|
alat = -alat |
895
|
|
|
try: |
896
|
|
|
newglat, newglon, error = self.apex2geo(alat, alon, newheight, |
897
|
|
|
precision=precision) |
898
|
|
|
except ApexHeightError: |
899
|
|
|
raise ApexHeightError("input height is > apex height") |
900
|
|
|
|
901
|
|
|
return newglat, newglon, error |
902
|
|
|
|
903
|
|
|
def map_E_to_height(self, alat, alon, height, newheight, edata): |
904
|
|
|
"""Performs mapping of electric field along the magnetic field. |
905
|
|
|
|
906
|
|
|
It is assumed that the electric field is perpendicular to B. |
907
|
|
|
|
908
|
|
|
Parameters |
909
|
|
|
---------- |
910
|
|
|
alat : (N,) array_like or float |
911
|
|
|
Modified apex latitude |
912
|
|
|
alon : (N,) array_like or float |
913
|
|
|
Modified apex longitude |
914
|
|
|
height : (N,) array_like or float |
915
|
|
|
Source altitude in km |
916
|
|
|
newheight : (N,) array_like or float |
917
|
|
|
Destination altitude in km |
918
|
|
|
edata : (3,) or (3, N) array_like |
919
|
|
|
Electric field (at `alat`, `alon`, `height`) in geodetic east, |
920
|
|
|
north, and up components |
921
|
|
|
|
922
|
|
|
Returns |
923
|
|
|
------- |
924
|
|
|
out : (3, N) or (3,) ndarray |
925
|
|
|
The electric field at `newheight` (geodetic east, north, and up |
926
|
|
|
components) |
927
|
|
|
|
928
|
|
|
""" |
929
|
|
|
# Call hidden mapping method with flag for the electric field |
930
|
|
|
out = self._map_EV_to_height(alat, alon, height, newheight, edata, 'E') |
931
|
|
|
|
932
|
|
|
return out |
933
|
|
|
|
934
|
|
|
def map_V_to_height(self, alat, alon, height, newheight, vdata): |
935
|
|
|
"""Performs mapping of electric drift velocity along the magnetic field. |
936
|
|
|
|
937
|
|
|
It is assumed that the electric field is perpendicular to B. |
938
|
|
|
|
939
|
|
|
Parameters |
940
|
|
|
---------- |
941
|
|
|
alat : (N,) array_like or float |
942
|
|
|
Modified apex latitude |
943
|
|
|
alon : (N,) array_like or float |
944
|
|
|
Modified apex longitude |
945
|
|
|
height : (N,) array_like or float |
946
|
|
|
Source altitude in km |
947
|
|
|
newheight : (N,) array_like or float |
948
|
|
|
Destination altitude in km |
949
|
|
|
vdata : (3,) or (3, N) array_like |
950
|
|
|
Electric drift velocity (at `alat`, `alon`, `height`) in geodetic |
951
|
|
|
east, north, and up components |
952
|
|
|
|
953
|
|
|
Returns |
954
|
|
|
------- |
955
|
|
|
out : (3, N) or (3,) ndarray |
956
|
|
|
The electric drift velocity at `newheight` (geodetic east, north, |
957
|
|
|
and up components) |
958
|
|
|
|
959
|
|
|
""" |
960
|
|
|
# Call hidden mapping method with flag for the electric drift velocities |
961
|
|
|
out = self._map_EV_to_height(alat, alon, height, newheight, vdata, 'V') |
962
|
|
|
|
963
|
|
|
return out |
964
|
|
|
|
965
|
|
|
def basevectors_qd(self, lat, lon, height, coords='geo', precision=1e-10): |
966
|
|
|
"""Get quasi-dipole base vectors f1 and f2 at the specified coordinates. |
967
|
|
|
|
968
|
|
|
Parameters |
969
|
|
|
---------- |
970
|
|
|
lat : (N,) array_like or float |
971
|
|
|
Latitude |
972
|
|
|
lon : (N,) array_like or float |
973
|
|
|
Longitude |
974
|
|
|
height : (N,) array_like or float |
975
|
|
|
Altitude in km |
976
|
|
|
coords : {'geo', 'apex', 'qd'}, optional |
977
|
|
|
Input coordinate system |
978
|
|
|
precision : float, optional |
979
|
|
|
Precision of output (degrees) when converting to geo. A negative |
980
|
|
|
value of this argument produces a low-precision calculation of |
981
|
|
|
geodetic lat/lon based only on their spherical harmonic |
982
|
|
|
representation. |
983
|
|
|
A positive value causes the underlying Fortran routine to iterate |
984
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
985
|
|
|
the input QD lat/lon to within the specified precision (all |
986
|
|
|
coordinates being converted to geo are converted to QD first and |
987
|
|
|
passed through APXG2Q). |
988
|
|
|
|
989
|
|
|
Returns |
990
|
|
|
------- |
991
|
|
|
f1 : (2, N) or (2,) ndarray |
992
|
|
|
f2 : (2, N) or (2,) ndarray |
993
|
|
|
|
994
|
|
|
Notes |
995
|
|
|
----- |
996
|
|
|
The vectors are described by Richmond [1995] [2]_ and |
997
|
|
|
Emmert et al. [2010] [3]_. The vector components are geodetic east and |
998
|
|
|
north. |
999
|
|
|
|
1000
|
|
|
References |
1001
|
|
|
---------- |
1002
|
|
|
.. [2] Richmond, A. D. (1995), Ionospheric Electrodynamics Using |
1003
|
|
|
Magnetic Apex Coordinates, Journal of geomagnetism and |
1004
|
|
|
geoelectricity, 47(2), 191–212, :doi:`10.5636/jgg.47.191`. |
1005
|
|
|
|
1006
|
|
|
.. [3] Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), |
1007
|
|
|
A computationally compact representation of Magnetic-Apex |
1008
|
|
|
and Quasi-Dipole coordinates with smooth base vectors, |
1009
|
|
|
J. Geophys. Res., 115(A8), A08322, doi:10.1029/2010JA015326. |
1010
|
|
|
|
1011
|
|
|
""" |
1012
|
|
|
# Convert from current coordinates to geodetic coordinates |
1013
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
1014
|
|
|
precision=precision) |
1015
|
|
|
|
1016
|
|
|
# Get the geodetic base vectors |
1017
|
|
|
f1, f2 = self._basevec(glat, glon, height) |
1018
|
|
|
|
1019
|
|
|
# If inputs are not scalar, each vector is an array of arrays, |
1020
|
|
|
# so reshape to a single array |
1021
|
|
|
if f1.dtype == object: |
1022
|
|
|
f1 = np.vstack(f1).T |
1023
|
|
|
f2 = np.vstack(f2).T |
1024
|
|
|
|
1025
|
|
|
return f1, f2 |
1026
|
|
|
|
1027
|
|
|
def basevectors_apex(self, lat, lon, height, coords='geo', precision=1e-10): |
1028
|
|
|
"""Returns base vectors in quasi-dipole and apex coordinates. |
1029
|
|
|
|
1030
|
|
|
Parameters |
1031
|
|
|
---------- |
1032
|
|
|
lat : array_like or float |
1033
|
|
|
Latitude in degrees; input must be broadcastable with `lon` and |
1034
|
|
|
`height`. |
1035
|
|
|
lon : array_like or float |
1036
|
|
|
Longitude in degrees; input must be broadcastable with `lat` and |
1037
|
|
|
`height`. |
1038
|
|
|
height : array_like or float |
1039
|
|
|
Altitude in km; input must be broadcastable with `lon` and `lat`. |
1040
|
|
|
coords : str, optional |
1041
|
|
|
Input coordinate system, expects one of 'geo', 'apex', or 'qd' |
1042
|
|
|
(default='geo') |
1043
|
|
|
precision : float, optional |
1044
|
|
|
Precision of output (degrees) when converting to geo. A negative |
1045
|
|
|
value of this argument produces a low-precision calculation of |
1046
|
|
|
geodetic lat/lon based only on their spherical harmonic |
1047
|
|
|
representation. |
1048
|
|
|
A positive value causes the underlying Fortran routine to iterate |
1049
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
1050
|
|
|
the input QD lat/lon to within the specified precision (all |
1051
|
|
|
coordinates being converted to geo are converted to QD first and |
1052
|
|
|
passed through APXG2Q). |
1053
|
|
|
|
1054
|
|
|
Returns |
1055
|
|
|
------- |
1056
|
|
|
f1 : (3, N) or (3,) ndarray |
1057
|
|
|
Quasi-dipole base vector equivalent to e1, tangent to contours of |
1058
|
|
|
constant lambdaA |
1059
|
|
|
f2 : (3, N) or (3,) ndarray |
1060
|
|
|
Quasi-dipole base vector equivalent to e2 |
1061
|
|
|
f3 : (3, N) or (3,) ndarray |
1062
|
|
|
Quasi-dipole base vector equivalent to e3, tangent to contours of |
1063
|
|
|
PhiA |
1064
|
|
|
g1 : (3, N) or (3,) ndarray |
1065
|
|
|
Quasi-dipole base vector equivalent to d1 |
1066
|
|
|
g2 : (3, N) or (3,) ndarray |
1067
|
|
|
Quasi-dipole base vector equivalent to d2 |
1068
|
|
|
g3 : (3, N) or (3,) ndarray |
1069
|
|
|
Quasi-dipole base vector equivalent to d3 |
1070
|
|
|
d1 : (3, N) or (3,) ndarray |
1071
|
|
|
Apex base vector normal to contours of constant PhiA |
1072
|
|
|
d2 : (3, N) or (3,) ndarray |
1073
|
|
|
Apex base vector that completes the right-handed system |
1074
|
|
|
d3 : (3, N) or (3,) ndarray |
1075
|
|
|
Apex base vector normal to contours of constant lambdaA |
1076
|
|
|
e1 : (3, N) or (3,) ndarray |
1077
|
|
|
Apex base vector tangent to contours of constant V0 |
1078
|
|
|
e2 : (3, N) or (3,) ndarray |
1079
|
|
|
Apex base vector that completes the right-handed system |
1080
|
|
|
e3 : (3, N) or (3,) ndarray |
1081
|
|
|
Apex base vector tangent to contours of constant PhiA |
1082
|
|
|
|
1083
|
|
|
Notes |
1084
|
|
|
----- |
1085
|
|
|
The vectors are described by Richmond [1995] [4]_ and |
1086
|
|
|
Emmert et al. [2010] [5]_. The vector components are geodetic east, |
1087
|
|
|
north, and up (only east and north for `f1` and `f2`). |
1088
|
|
|
|
1089
|
|
|
`f3`, `g1`, `g2`, and `g3` are not part of the Fortran code |
1090
|
|
|
by Emmert et al. [2010] [5]_. They are calculated by this |
1091
|
|
|
Python library according to the following equations in |
1092
|
|
|
Richmond [1995] [4]_: |
1093
|
|
|
|
1094
|
|
|
* `g1`: Eqn. 6.3 |
1095
|
|
|
* `g2`: Eqn. 6.4 |
1096
|
|
|
* `g3`: Eqn. 6.5 |
1097
|
|
|
* `f3`: Eqn. 6.8 |
1098
|
|
|
|
1099
|
|
|
References |
1100
|
|
|
---------- |
1101
|
|
|
.. [4] Richmond, A. D. (1995), Ionospheric Electrodynamics Using |
1102
|
|
|
Magnetic Apex Coordinates, Journal of geomagnetism and |
1103
|
|
|
geoelectricity, 47(2), 191–212, :doi:`10.5636/jgg.47.191`. |
1104
|
|
|
|
1105
|
|
|
.. [5] Emmert, J. T., A. D. Richmond, and D. P. Drob (2010), |
1106
|
|
|
A computationally compact representation of Magnetic-Apex |
1107
|
|
|
and Quasi-Dipole coordinates with smooth base vectors, |
1108
|
|
|
J. Geophys. Res., 115(A8), A08322, doi:10.1029/2010JA015326. |
1109
|
|
|
|
1110
|
|
|
""" |
1111
|
|
|
# Convert to geodetic coordinates from current coordinate system |
1112
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
1113
|
|
|
precision=precision) |
1114
|
|
|
|
1115
|
|
|
# Retrieve the desired magnetic locations and base vectors |
1116
|
|
|
returnvals = list(self._geo2apexall(glat, glon, height)) |
1117
|
|
|
qlat = np.float64(returnvals[0]) |
1118
|
|
|
alat = np.float64(returnvals[2]) |
1119
|
|
|
bvec_ind = [4, 5, 7, 8, 9, 11, 12, 13] |
1120
|
|
|
|
1121
|
|
|
# If inputs are not scalar, each vector is an array of arrays, |
1122
|
|
|
# so reshape to a single array |
1123
|
|
|
if returnvals[4].dtype == object: |
1124
|
|
|
for i in bvec_ind: |
1125
|
|
|
returnvals[i] = np.vstack(returnvals[i]).T |
1126
|
|
|
|
1127
|
|
|
# Make sure the base vector arrays are 2D |
1128
|
|
|
for i in bvec_ind: |
1129
|
|
|
if i in [4, 5]: |
1130
|
|
|
rsize = (2, returnvals[i].size // 2) |
1131
|
|
|
else: |
1132
|
|
|
rsize = (3, returnvals[i].size // 3) |
1133
|
|
|
returnvals[i] = returnvals[i].reshape(rsize) |
1134
|
|
|
|
1135
|
|
|
# Assign the reshaped base vectors |
1136
|
|
|
f1, f2 = returnvals[4:6] |
1137
|
|
|
d1, d2, d3 = returnvals[7:10] |
1138
|
|
|
e1, e2, e3 = returnvals[11:14] |
1139
|
|
|
|
1140
|
|
|
# Compute f3, g1, g2, g3 (outstanding quasi-dipole base vectors) |
1141
|
|
|
# |
1142
|
|
|
# Start by calculating the D equivalent, F (F_scalar) |
1143
|
|
|
f1_stack = np.vstack((f1, np.zeros_like(f1[0]))) |
1144
|
|
|
f2_stack = np.vstack((f2, np.zeros_like(f2[0]))) |
1145
|
|
|
F_scalar = np.cross(f1_stack.T, f2_stack.T).T[-1] |
1146
|
|
|
|
1147
|
|
|
# Get the cosine of the magnetic inclination |
1148
|
|
|
cos_mag_inc = helpers.getcosIm(alat) |
1149
|
|
|
|
1150
|
|
|
# Define the k base vectors |
1151
|
|
|
k_unit = np.array([0, 0, 1], dtype=np.float64).reshape((3, 1)) |
1152
|
|
|
|
1153
|
|
|
# Calculate the remaining quasi-dipole base vectors |
1154
|
|
|
g1 = ((self.RE + np.asarray(height)) |
1155
|
|
|
/ (self.RE + self.refh)) ** (3 / 2) * d1 / F_scalar |
1156
|
|
|
g2 = -1.0 / (2.0 * F_scalar * np.tan(np.radians(qlat))) * ( |
1157
|
|
|
k_unit + ((self.RE + np.asarray(height)) |
1158
|
|
|
/ (self.RE + self.refh)) * d2 / cos_mag_inc) |
1159
|
|
|
g3 = k_unit * F_scalar |
1160
|
|
|
f3 = np.cross(g1.T, g2.T).T |
1161
|
|
|
|
1162
|
|
|
# Reshape the output |
1163
|
|
|
out = [f1, f2, f3, g1, g2, g3, d1, d2, d3, e1, e2, e3] |
1164
|
|
|
|
1165
|
|
|
if np.any(alat == -9999): |
1166
|
|
|
warnings.warn(''.join(['Base vectors g, d, e, and f3 set to NaN ', |
1167
|
|
|
'where apex latitude is undefined (apex ', |
1168
|
|
|
'height may be < reference height)'])) |
1169
|
|
|
mask = alat == -9999 |
1170
|
|
|
for i in range(len(out) - 2): |
1171
|
|
|
out[i + 2] = np.where(mask, np.nan, out[i + 2]) |
1172
|
|
|
|
1173
|
|
|
out = tuple(np.squeeze(bvec) for bvec in out) |
1174
|
|
|
|
1175
|
|
|
return out |
1176
|
|
|
|
1177
|
|
|
def get_apex(self, lat, height=None): |
1178
|
|
|
"""Calculate the apex height along a field line. |
1179
|
|
|
|
1180
|
|
|
Parameters |
1181
|
|
|
---------- |
1182
|
|
|
lat : float |
1183
|
|
|
Apex latitude in degrees |
1184
|
|
|
height : float or NoneType |
1185
|
|
|
Height above the surface of the Earth in km or NoneType to use |
1186
|
|
|
reference height (default=None) |
1187
|
|
|
|
1188
|
|
|
Returns |
1189
|
|
|
------- |
1190
|
|
|
apex_height : float |
1191
|
|
|
Height of the field line apex in km |
1192
|
|
|
|
1193
|
|
|
""" |
1194
|
|
|
# Check the latitude |
1195
|
|
|
lat = helpers.checklat(lat, name='alat') |
1196
|
|
|
|
1197
|
|
|
# Ensure the height is set |
1198
|
|
|
if height is None: |
1199
|
|
|
height = self.refh |
1200
|
|
|
|
1201
|
|
|
# Calculate the apex height |
1202
|
|
|
cos_lat_squared = np.cos(np.radians(lat)) ** 2 |
1203
|
|
|
apex_height = (self.RE + height) / cos_lat_squared - self.RE |
1204
|
|
|
|
1205
|
|
|
return apex_height |
1206
|
|
|
|
1207
|
|
|
def get_height(self, lat, apex_height): |
1208
|
|
|
"""Calculate the height given an apex latitude and apex height. |
1209
|
|
|
|
1210
|
|
|
Parameters |
1211
|
|
|
---------- |
1212
|
|
|
lat : float |
1213
|
|
|
Apex latitude in degrees |
1214
|
|
|
apex_height : float |
1215
|
|
|
Maximum height of the apex field line above the surface of the |
1216
|
|
|
Earth in km |
1217
|
|
|
|
1218
|
|
|
Returns |
1219
|
|
|
------- |
1220
|
|
|
height : float |
1221
|
|
|
Height above the surface of the Earth in km |
1222
|
|
|
|
1223
|
|
|
""" |
1224
|
|
|
# Check the latitude |
1225
|
|
|
lat = helpers.checklat(lat, name='alat') |
1226
|
|
|
|
1227
|
|
|
# Calculate the height from the apex height |
1228
|
|
|
cos_lat_squared = np.cos(np.radians(lat)) ** 2 |
1229
|
|
|
height = cos_lat_squared * (apex_height + self.RE) - self.RE |
1230
|
|
|
|
1231
|
|
|
return height |
1232
|
|
|
|
1233
|
|
|
def set_epoch(self, year): |
1234
|
|
|
"""Updates the epoch for all subsequent conversions. |
1235
|
|
|
|
1236
|
|
|
Parameters |
1237
|
|
|
---------- |
1238
|
|
|
year : float |
1239
|
|
|
Decimal year |
1240
|
|
|
|
1241
|
|
|
""" |
1242
|
|
|
# Set the year and load the data file |
1243
|
|
|
self.year = np.float64(year) |
1244
|
|
|
fa.loadapxsh(self.datafile, self.year) |
1245
|
|
|
|
1246
|
|
|
# Call the Fortran routine to set time |
1247
|
|
|
fa.cofrm(self.year, self.igrf_fn) |
1248
|
|
|
return |
1249
|
|
|
|
1250
|
|
|
def set_refh(self, refh): |
1251
|
|
|
"""Updates the apex reference height for all subsequent conversions. |
1252
|
|
|
|
1253
|
|
|
Parameters |
1254
|
|
|
---------- |
1255
|
|
|
refh : float |
1256
|
|
|
Apex reference height in km |
1257
|
|
|
|
1258
|
|
|
Notes |
1259
|
|
|
----- |
1260
|
|
|
The reference height is the height to which field lines will be mapped, |
1261
|
|
|
and is only relevant for conversions involving apex (not quasi-dipole). |
1262
|
|
|
|
1263
|
|
|
""" |
1264
|
|
|
self.refh = refh |
1265
|
|
|
|
1266
|
|
|
def get_babs(self, glat, glon, height): |
1267
|
|
|
"""Returns the magnitude of the IGRF magnetic field in tesla. |
1268
|
|
|
|
1269
|
|
|
Parameters |
1270
|
|
|
---------- |
1271
|
|
|
glat : array_like |
1272
|
|
|
Geodetic latitude in degrees |
1273
|
|
|
glon : array_like |
1274
|
|
|
Geodetic longitude in degrees |
1275
|
|
|
height : array_like |
1276
|
|
|
Altitude in km |
1277
|
|
|
|
1278
|
|
|
Returns |
1279
|
|
|
------- |
1280
|
|
|
babs : ndarray or float |
1281
|
|
|
Magnitude of the IGRF magnetic field in Tesla |
1282
|
|
|
|
1283
|
|
|
""" |
1284
|
|
|
# Get the absolute value of the magnetic field at the desired location |
1285
|
|
|
babs = self._get_babs(glat, glon, height) |
1286
|
|
|
|
1287
|
|
|
# If array is returned, the dtype is object, so convert to float |
1288
|
|
|
babs = helpers.set_array_float(babs) |
1289
|
|
|
|
1290
|
|
|
return babs |
1291
|
|
|
|
1292
|
|
|
def bvectors_apex(self, lat, lon, height, coords='geo', precision=1e-10): |
1293
|
|
|
"""Returns the magnetic field vectors in apex coordinates. |
1294
|
|
|
|
1295
|
|
|
Parameters |
1296
|
|
|
---------- |
1297
|
|
|
lat : (N,) array_like or float |
1298
|
|
|
Latitude |
1299
|
|
|
lon : (N,) array_like or float |
1300
|
|
|
Longitude |
1301
|
|
|
height : (N,) array_like or float |
1302
|
|
|
Altitude in km |
1303
|
|
|
coords : {'geo', 'apex', 'qd'}, optional |
1304
|
|
|
Input coordinate system |
1305
|
|
|
precision : float, optional |
1306
|
|
|
Precision of output (degrees) when converting to geo. A negative |
1307
|
|
|
value of this argument produces a low-precision calculation of |
1308
|
|
|
geodetic lat/lon based only on their spherical harmonic |
1309
|
|
|
representation. |
1310
|
|
|
A positive value causes the underlying Fortran routine to iterate |
1311
|
|
|
until feeding the output geo lat/lon into geo2qd (APXG2Q) reproduces |
1312
|
|
|
the input QD lat/lon to within the specified precision (all |
1313
|
|
|
coordinates being converted to geo are converted to QD first and |
1314
|
|
|
passed through APXG2Q). |
1315
|
|
|
|
1316
|
|
|
Returns |
1317
|
|
|
------- |
1318
|
|
|
main_mag_e3: (1, N) or (1,) ndarray |
1319
|
|
|
IGRF magnitude divided by a scaling factor, D (d_scale) to give |
1320
|
|
|
the main B field magnitude along the e3 base vector |
1321
|
|
|
e3 : (3, N) or (3,) ndarray |
1322
|
|
|
Base vector tangent to the contours of constant V_0 and Phi_A |
1323
|
|
|
main_mag_d3: (1, N) or (1,) ndarray |
1324
|
|
|
IGRF magnitude multiplied by a scaling factor, D (d_scale) to give |
1325
|
|
|
the main B field magnitudee along the d3 base vector |
1326
|
|
|
d3 : (3, N) or (3,) ndarray |
1327
|
|
|
Base vector equivalent to the scaled main field unit vector |
1328
|
|
|
|
1329
|
|
|
Notes |
1330
|
|
|
----- |
1331
|
|
|
See Richmond, A. D. (1995) [4]_ equations 3.8-3.14 |
1332
|
|
|
|
1333
|
|
|
The apex magnetic field vectors described by Richmond [1995] [4]_ and |
1334
|
|
|
Emmert et al. [2010] [5]_, specfically the Be3 (main_mag_e3) and Bd3 |
1335
|
|
|
(main_mag_d3) components. The vector components are geodetic east, |
1336
|
|
|
north, and up. |
1337
|
|
|
|
1338
|
|
|
References |
1339
|
|
|
---------- |
1340
|
|
|
Richmond, A. D. (1995) [4]_ |
1341
|
|
|
Emmert, J. T. et al. (2010) [5]_ |
1342
|
|
|
|
1343
|
|
|
""" |
1344
|
|
|
# Convert the current coordinates to geodetic coordinates |
1345
|
|
|
glat, glon = self.convert(lat, lon, coords, 'geo', height=height, |
1346
|
|
|
precision=precision) |
1347
|
|
|
|
1348
|
|
|
# Get the magnitude of the magnetic field at the desired location |
1349
|
|
|
babs = self.get_babs(glat, glon, height) |
1350
|
|
|
|
1351
|
|
|
# Retrieve the necessary base vectors |
1352
|
|
|
_, _, _, _, _, _, d1, d2, d3, _, _, e3 = self.basevectors_apex( |
1353
|
|
|
glat, glon, height, coords='geo') |
1354
|
|
|
|
1355
|
|
|
# Perform the calculations described in [4] |
1356
|
|
|
d1_cross_d2 = np.cross(d1.T, d2.T).T |
1357
|
|
|
d_scale = np.sqrt(np.sum(d1_cross_d2 ** 2, axis=0)) # D in [4] 3.13 |
1358
|
|
|
|
1359
|
|
|
main_mag_e3 = babs / d_scale # Solve for b0 in [4] 3.13 |
1360
|
|
|
main_mag_d3 = babs * d_scale # Solve for b0 in [4] 3.10 |
1361
|
|
|
|
1362
|
|
|
return main_mag_e3, e3, main_mag_d3, d3 |
1363
|
|
|
|