|
1
|
|
|
# Copyright (C) 2019 NRL |
|
2
|
|
|
# Author: Angeline Burrell |
|
3
|
|
|
# Disclaimer: This code is under the MIT license, whose details can be found at |
|
4
|
|
|
# the root in the LICENSE file |
|
5
|
|
|
# |
|
6
|
|
|
# -*- coding: utf-8 -*- |
|
7
|
|
|
"""utilities that support the AACGM-V2 C functions. |
|
8
|
|
|
|
|
9
|
|
|
References |
|
10
|
|
|
---------- |
|
11
|
|
|
Laundal, K. M. and A. D. Richmond (2016), Magnetic Coordinate Systems, Space |
|
12
|
|
|
Sci. Rev., doi:10.1007/s11214-016-0275-y. |
|
13
|
|
|
|
|
14
|
|
|
""" |
|
15
|
|
|
|
|
16
|
|
|
from __future__ import division, absolute_import, unicode_literals |
|
17
|
|
|
import datetime as dt |
|
18
|
|
|
import numpy as np |
|
19
|
|
|
|
|
20
|
|
|
import aacgmv2 |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
def gc2gd_lat(gc_lat): |
|
24
|
|
|
"""Convert geocentric latitude to geodetic latitude using WGS84. |
|
25
|
|
|
|
|
26
|
|
|
Parameters |
|
27
|
|
|
----------- |
|
28
|
|
|
gc_lat : (array_like or float) |
|
29
|
|
|
Geocentric latitude in degrees N |
|
30
|
|
|
|
|
31
|
|
|
Returns |
|
32
|
|
|
--------- |
|
33
|
|
|
gd_lat : (same as input) |
|
34
|
|
|
Geodetic latitude in degrees N |
|
35
|
|
|
|
|
36
|
|
|
""" |
|
37
|
|
|
|
|
38
|
|
|
wgs84_e2 = 0.006694379990141317 - 1.0 |
|
39
|
|
|
gd_lat = np.rad2deg(-np.arctan(np.tan(np.deg2rad(gc_lat)) / wgs84_e2)) |
|
40
|
|
|
|
|
41
|
|
|
return gd_lat |
|
42
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
def subsol(year, doy, utime): |
|
45
|
|
|
"""Finds subsolar geocentric longitude and latitude. |
|
46
|
|
|
|
|
47
|
|
|
Parameters |
|
48
|
|
|
---------- |
|
49
|
|
|
year : (int) |
|
50
|
|
|
Calendar year between 1601 and 2100 |
|
51
|
|
|
doy : (int) |
|
52
|
|
|
Day of year between 1-365/366 |
|
53
|
|
|
utime : (float) |
|
54
|
|
|
Seconds since midnight on the specified day |
|
55
|
|
|
|
|
56
|
|
|
Returns |
|
57
|
|
|
------- |
|
58
|
|
|
sbsllon : (float) |
|
59
|
|
|
Subsolar longitude in degrees E for the given date/time |
|
60
|
|
|
sbsllat : (float) |
|
61
|
|
|
Subsolar latitude in degrees N for the given date/time |
|
62
|
|
|
|
|
63
|
|
|
Notes |
|
64
|
|
|
----- |
|
65
|
|
|
Based on formulas in Astronomical Almanac for the year 1996, p. C24. |
|
66
|
|
|
(U.S. Government Printing Office, 1994). Usable for years 1601-2100, |
|
67
|
|
|
inclusive. According to the Almanac, results are good to at least 0.01 |
|
68
|
|
|
degree latitude and 0.025 degrees longitude between years 1950 and 2050. |
|
69
|
|
|
Accuracy for other years has not been tested. Every day is assumed to have |
|
70
|
|
|
exactly 86400 seconds; thus leap seconds that sometimes occur on December |
|
71
|
|
|
31 are ignored (their effect is below the accuracy threshold of the |
|
72
|
|
|
algorithm). |
|
73
|
|
|
|
|
74
|
|
|
References |
|
75
|
|
|
---------- |
|
76
|
|
|
After Fortran code by A. D. Richmond, NCAR. Translated from IDL |
|
77
|
|
|
by K. Laundal. |
|
78
|
|
|
|
|
79
|
|
|
""" |
|
80
|
|
|
|
|
81
|
|
|
# Convert from 4 digit year to 2 digit year |
|
82
|
|
|
yr2 = year - 2000 |
|
83
|
|
|
|
|
84
|
|
|
if year >= 2101: |
|
85
|
|
|
aacgmv2.logger.error('subsol invalid after 2100. Input year is:', year) |
|
86
|
|
|
|
|
87
|
|
|
# Determine if this year is a leap year |
|
88
|
|
|
nleap = np.floor((year - 1601) / 4) |
|
89
|
|
|
nleap = nleap - 99 |
|
90
|
|
|
if year <= 1900: |
|
91
|
|
|
if year <= 1600: |
|
92
|
|
|
print('subsol.py: subsol invalid before 1601. Input year is:', year) |
|
93
|
|
|
ncent = np.floor((year - 1601) / 100) |
|
94
|
|
|
ncent = 3 - ncent |
|
95
|
|
|
nleap = nleap + ncent |
|
96
|
|
|
|
|
97
|
|
|
# Calculate some of the coefficients needed to deterimine the mean longitude |
|
98
|
|
|
# of the sun and the mean anomaly |
|
99
|
|
|
l_0 = -79.549 + (-0.238699 * (yr2 - 4 * nleap) + 3.08514e-2 * nleap) |
|
100
|
|
|
g_0 = -2.472 + (-0.2558905 * (yr2 - 4 * nleap) - 3.79617e-2 * nleap) |
|
101
|
|
|
|
|
102
|
|
|
# Days (including fraction) since 12 UT on January 1 of IYR2: |
|
103
|
|
|
dfrac = (utime / 86400 - 1.5) + doy |
|
104
|
|
|
|
|
105
|
|
|
# Mean longitude of Sun: |
|
106
|
|
|
l_sun = l_0 + 0.9856474 * dfrac |
|
107
|
|
|
|
|
108
|
|
|
# Mean anomaly: |
|
109
|
|
|
grad = np.radians(g_0 + 0.9856003 * dfrac) |
|
110
|
|
|
|
|
111
|
|
|
# Ecliptic longitude: |
|
112
|
|
|
lmrad = np.radians(l_sun + 1.915 * np.sin(grad) + 0.020 * np.sin(2 * grad)) |
|
113
|
|
|
sinlm = np.sin(lmrad) |
|
114
|
|
|
|
|
115
|
|
|
# Days (including fraction) since 12 UT on January 1 of 2000: |
|
116
|
|
|
epoch_day = dfrac + 365.0 * yr2 + nleap |
|
117
|
|
|
|
|
118
|
|
|
# Obliquity of ecliptic: |
|
119
|
|
|
epsrad = np.radians(23.439 - 4.0e-7 * epoch_day) |
|
120
|
|
|
|
|
121
|
|
|
# Right ascension: |
|
122
|
|
|
alpha = np.degrees(np.arctan2(np.cos(epsrad) * sinlm, np.cos(lmrad))) |
|
123
|
|
|
|
|
124
|
|
|
# Declination, which is the subsolar latitude: |
|
125
|
|
|
sbsllat = np.degrees(np.arcsin(np.sin(epsrad) * sinlm)) |
|
126
|
|
|
|
|
127
|
|
|
# Equation of time (degrees): |
|
128
|
|
|
etdeg = l_sun - alpha |
|
129
|
|
|
etdeg = etdeg - 360.0 * np.round(etdeg / 360.0) |
|
130
|
|
|
|
|
131
|
|
|
# Apparent time (degrees): |
|
132
|
|
|
aptime = utime / 240.0 + etdeg # Earth rotates one degree every 240 s. |
|
133
|
|
|
|
|
134
|
|
|
# Subsolar longitude: |
|
135
|
|
|
sbsllon = 180.0 - aptime |
|
136
|
|
|
sbsllon = sbsllon - 360.0 * np.round(sbsllon / 360.0) |
|
137
|
|
|
|
|
138
|
|
|
return sbsllon, sbsllat |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
def igrf_dipole_axis(date): |
|
142
|
|
|
"""Get Cartesian unit vector pointing at dipole pole in the north, |
|
143
|
|
|
according to IGRF |
|
144
|
|
|
|
|
145
|
|
|
Parameters |
|
146
|
|
|
---------- |
|
147
|
|
|
date : (dt.datetime) |
|
148
|
|
|
Date and time |
|
149
|
|
|
|
|
150
|
|
|
Returns |
|
151
|
|
|
------- |
|
152
|
|
|
m_0: (np.ndarray) |
|
153
|
|
|
Cartesian 3 element unit vector pointing at dipole pole in the north |
|
154
|
|
|
(geocentric coords) |
|
155
|
|
|
|
|
156
|
|
|
Notes |
|
157
|
|
|
----- |
|
158
|
|
|
IGRF coefficients are read from the igrf12coeffs.txt file. It should also |
|
159
|
|
|
work after IGRF updates. The dipole coefficients are interpolated to the |
|
160
|
|
|
date, or extrapolated if date > latest IGRF model |
|
161
|
|
|
|
|
162
|
|
|
""" |
|
163
|
|
|
|
|
164
|
|
|
# get time in years, as float: |
|
165
|
|
|
year = date.year |
|
166
|
|
|
doy = date.timetuple().tm_yday |
|
167
|
|
|
year_days = int(dt.date(date.year, 12, 31).strftime("%j")) |
|
168
|
|
|
year = year + doy / year_days |
|
169
|
|
|
|
|
170
|
|
|
# read the IGRF coefficients |
|
171
|
|
|
with open(aacgmv2.IGRF_COEFFS, 'r') as f_igrf: |
|
172
|
|
|
lines = f_igrf.readlines() |
|
173
|
|
|
|
|
174
|
|
|
years = lines[3].split()[3:][:-1] |
|
175
|
|
|
years = np.array(years, dtype=float) # time array |
|
176
|
|
|
|
|
177
|
|
|
g10 = lines[4].split()[3:] |
|
178
|
|
|
g11 = lines[5].split()[3:] |
|
179
|
|
|
h11 = lines[6].split()[3:] |
|
180
|
|
|
|
|
181
|
|
|
# secular variation coefficients (for extrapolation) |
|
182
|
|
|
g10sv = np.float32(g10[-1]) |
|
183
|
|
|
g11sv = np.float32(g11[-1]) |
|
184
|
|
|
h11sv = np.float32(h11[-1]) |
|
185
|
|
|
|
|
186
|
|
|
# model coefficients: |
|
187
|
|
|
g10 = np.array(g10[:-1], dtype=float) |
|
188
|
|
|
g11 = np.array(g11[:-1], dtype=float) |
|
189
|
|
|
h11 = np.array(h11[:-1], dtype=float) |
|
190
|
|
|
|
|
191
|
|
|
# get the gauss coefficient at given time: |
|
192
|
|
|
if year <= years[-1]: |
|
193
|
|
|
# regular interpolation |
|
194
|
|
|
g10 = np.interp(year, years, g10) |
|
195
|
|
|
g11 = np.interp(year, years, g11) |
|
196
|
|
|
h11 = np.interp(year, years, h11) |
|
197
|
|
|
else: |
|
198
|
|
|
# extrapolation |
|
199
|
|
|
dyear = year - years[-1] |
|
200
|
|
|
g10 = g10[-1] + g10sv * dyear |
|
201
|
|
|
g11 = g11[-1] + g11sv * dyear |
|
202
|
|
|
h11 = h11[-1] + h11sv * dyear |
|
203
|
|
|
|
|
204
|
|
|
# calculate pole position |
|
205
|
|
|
B_0 = np.sqrt(g10**2 + g11**2 + h11**2) |
|
206
|
|
|
|
|
207
|
|
|
# Calculate output |
|
208
|
|
|
m_0 = -np.array([g11, h11, g10]) / B_0 |
|
209
|
|
|
|
|
210
|
|
|
return m_0 |
|
211
|
|
|
|