Conditions | 4 |
Total Lines | 70 |
Code Lines | 29 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # Copyright (C) 2019 NRL |
||
143 | def igrf_dipole_axis(date): |
||
144 | """Get Cartesian unit vector pointing at dipole pole in the north, |
||
145 | according to IGRF |
||
146 | |||
147 | Parameters |
||
148 | ---------- |
||
149 | date : (dt.datetime) |
||
150 | Date and time |
||
151 | |||
152 | Returns |
||
153 | ------- |
||
154 | m_0: (np.ndarray) |
||
155 | Cartesian 3 element unit vector pointing at dipole pole in the north |
||
156 | (geocentric coords) |
||
157 | |||
158 | Notes |
||
159 | ----- |
||
160 | IGRF coefficients are read from the igrf12coeffs.txt file. It should also |
||
161 | work after IGRF updates. The dipole coefficients are interpolated to the |
||
162 | date, or extrapolated if date > latest IGRF model |
||
163 | |||
164 | """ |
||
165 | |||
166 | # get time in years, as float: |
||
167 | year = date.year |
||
168 | doy = date.timetuple().tm_yday |
||
169 | year_days = dt.date(date.year, 12, 31).timetuple().tm_yday |
||
170 | year = year + doy / year_days |
||
171 | |||
172 | # read the IGRF coefficients |
||
173 | with open(aacgmv2.IGRF_COEFFS, 'r') as f_igrf: |
||
174 | lines = f_igrf.readlines() |
||
175 | |||
176 | years = lines[3].split()[3:][:-1] |
||
177 | years = np.array(years, dtype=float) # time array |
||
178 | |||
179 | g10 = lines[4].split()[3:] |
||
180 | g11 = lines[5].split()[3:] |
||
181 | h11 = lines[6].split()[3:] |
||
182 | |||
183 | # secular variation coefficients (for extrapolation) |
||
184 | g10sv = np.float32(g10[-1]) |
||
185 | g11sv = np.float32(g11[-1]) |
||
186 | h11sv = np.float32(h11[-1]) |
||
187 | |||
188 | # model coefficients: |
||
189 | g10 = np.array(g10[:-1], dtype=float) |
||
190 | g11 = np.array(g11[:-1], dtype=float) |
||
191 | h11 = np.array(h11[:-1], dtype=float) |
||
192 | |||
193 | # get the gauss coefficient at given time: |
||
194 | if year <= years[-1] and year >= years[0]: |
||
195 | # regular interpolation |
||
196 | g10 = np.interp(year, years, g10) |
||
197 | g11 = np.interp(year, years, g11) |
||
198 | h11 = np.interp(year, years, h11) |
||
199 | else: |
||
200 | # extrapolation |
||
201 | dyear = year - years[-1] |
||
202 | g10 = g10[-1] + g10sv * dyear |
||
203 | g11 = g11[-1] + g11sv * dyear |
||
204 | h11 = h11[-1] + h11sv * dyear |
||
205 | |||
206 | # calculate pole position |
||
207 | B_0 = np.sqrt(g10**2 + g11**2 + h11**2) |
||
208 | |||
209 | # Calculate output |
||
210 | m_0 = -np.array([g11, h11, g10]) / B_0 |
||
211 | |||
212 | return m_0 |
||
213 |