1
|
|
|
# Copyright (C) 2019 NRL |
2
|
|
|
# Author: Angeline Burrell |
3
|
|
|
# Disclaimer: This code is under the MIT license, whose details can be found at |
4
|
|
|
# the root in the LICENSE file |
5
|
|
|
# |
6
|
|
|
# -*- coding: utf-8 -*- |
7
|
|
|
"""Utilities that support the AACGM-V2 C functions. |
8
|
|
|
|
9
|
|
|
References |
10
|
|
|
---------- |
11
|
|
|
Laundal, K. M. and A. D. Richmond (2016), Magnetic Coordinate Systems, Space |
12
|
|
|
Sci. Rev., doi:10.1007/s11214-016-0275-y. |
13
|
|
|
|
14
|
|
|
""" |
15
|
|
|
|
16
|
|
|
import datetime as dt |
17
|
|
|
import numpy as np |
18
|
|
|
|
19
|
|
|
import aacgmv2 |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
def gc2gd_lat(gc_lat): |
23
|
|
|
"""Convert geocentric latitude to geodetic latitude using WGS84. |
24
|
|
|
|
25
|
|
|
Parameters |
26
|
|
|
----------- |
27
|
|
|
gc_lat : array-like or float |
28
|
|
|
Geocentric latitude in degrees N |
29
|
|
|
|
30
|
|
|
Returns |
31
|
|
|
--------- |
32
|
|
|
gd_lat : array-like or float |
33
|
|
|
Geodetic latitude in degrees N, same type as input `gc_lat` |
34
|
|
|
|
35
|
|
|
""" |
36
|
|
|
wgs84_e2 = 0.006694379990141317 - 1.0 |
37
|
|
|
gd_lat = np.rad2deg(-np.arctan(np.tan(np.deg2rad(gc_lat)) / wgs84_e2)) |
38
|
|
|
|
39
|
|
|
return gd_lat |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
def subsol(year, doy, utime): |
43
|
|
|
"""Find subsolar geocentric longitude and latitude. |
44
|
|
|
|
45
|
|
|
Parameters |
46
|
|
|
---------- |
47
|
|
|
year : int |
48
|
|
|
Calendar year between 1601 and 2100 |
49
|
|
|
doy : int |
50
|
|
|
Day of year between 1-365/366 |
51
|
|
|
utime : float |
52
|
|
|
Seconds since midnight on the specified day |
53
|
|
|
|
54
|
|
|
Returns |
55
|
|
|
------- |
56
|
|
|
sbsllon : float |
57
|
|
|
Subsolar longitude in degrees E for the given date/time |
58
|
|
|
sbsllat : float |
59
|
|
|
Subsolar latitude in degrees N for the given date/time |
60
|
|
|
|
61
|
|
|
Raises |
62
|
|
|
------ |
63
|
|
|
ValueError |
64
|
|
|
If year is out of range |
65
|
|
|
|
66
|
|
|
Notes |
67
|
|
|
----- |
68
|
|
|
Based on formulas in Astronomical Almanac for the year 1996, p. C24. |
69
|
|
|
(U.S. Government Printing Office, 1994). Usable for years 1601-2100, |
70
|
|
|
inclusive. According to the Almanac, results are good to at least 0.01 |
71
|
|
|
degree latitude and 0.025 degrees longitude between years 1950 and 2050. |
72
|
|
|
Accuracy for other years has not been tested. Every day is assumed to have |
73
|
|
|
exactly 86400 seconds; thus leap seconds that sometimes occur on December |
74
|
|
|
31 are ignored (their effect is below the accuracy threshold of the |
75
|
|
|
algorithm). |
76
|
|
|
|
77
|
|
|
References |
78
|
|
|
---------- |
79
|
|
|
After Fortran code by A. D. Richmond, NCAR. Translated from IDL |
80
|
|
|
by K. Laundal. |
81
|
|
|
|
82
|
|
|
""" |
83
|
|
|
# Convert from 4 digit year to 2 digit year |
84
|
|
|
yr2 = year - 2000 |
85
|
|
|
|
86
|
|
|
if year >= 2101 or year <= 1600: |
87
|
|
|
raise ValueError('subsol valid between 1601-2100. Input year is:', year) |
88
|
|
|
|
89
|
|
|
# Determine if this year is a leap year |
90
|
|
|
nleap = np.floor((year - 1601) / 4) |
91
|
|
|
nleap = nleap - 99 |
92
|
|
|
if year <= 1900: |
93
|
|
|
ncent = np.floor((year - 1601) / 100) |
94
|
|
|
ncent = 3 - ncent |
95
|
|
|
nleap = nleap + ncent |
96
|
|
|
|
97
|
|
|
# Calculate some of the coefficients needed to deterimine the mean longitude |
98
|
|
|
# of the sun and the mean anomaly |
99
|
|
|
l_0 = -79.549 + (-0.238699 * (yr2 - 4 * nleap) + 3.08514e-2 * nleap) |
100
|
|
|
g_0 = -2.472 + (-0.2558905 * (yr2 - 4 * nleap) - 3.79617e-2 * nleap) |
101
|
|
|
|
102
|
|
|
# Days (including fraction) since 12 UT on January 1 of IYR2: |
103
|
|
|
dfrac = (utime / 86400 - 1.5) + doy |
104
|
|
|
|
105
|
|
|
# Mean longitude of Sun: |
106
|
|
|
l_sun = l_0 + 0.9856474 * dfrac |
107
|
|
|
|
108
|
|
|
# Mean anomaly: |
109
|
|
|
grad = np.radians(g_0 + 0.9856003 * dfrac) |
110
|
|
|
|
111
|
|
|
# Ecliptic longitude: |
112
|
|
|
lmrad = np.radians(l_sun + 1.915 * np.sin(grad) + 0.020 * np.sin(2 * grad)) |
113
|
|
|
sinlm = np.sin(lmrad) |
114
|
|
|
|
115
|
|
|
# Days (including fraction) since 12 UT on January 1 of 2000: |
116
|
|
|
epoch_day = dfrac + 365.0 * yr2 + nleap |
117
|
|
|
|
118
|
|
|
# Obliquity of ecliptic: |
119
|
|
|
epsrad = np.radians(23.439 - 4.0e-7 * epoch_day) |
120
|
|
|
|
121
|
|
|
# Right ascension: |
122
|
|
|
alpha = np.degrees(np.arctan2(np.cos(epsrad) * sinlm, np.cos(lmrad))) |
123
|
|
|
|
124
|
|
|
# Declination, which is the subsolar latitude: |
125
|
|
|
sbsllat = np.degrees(np.arcsin(np.sin(epsrad) * sinlm)) |
126
|
|
|
|
127
|
|
|
# Equation of time (degrees): |
128
|
|
|
etdeg = l_sun - alpha |
129
|
|
|
etdeg = etdeg - 360.0 * np.round(etdeg / 360.0) |
130
|
|
|
|
131
|
|
|
# Apparent time (degrees): |
132
|
|
|
aptime = utime / 240.0 + etdeg # Earth rotates one degree every 240 s. |
133
|
|
|
|
134
|
|
|
# Subsolar longitude: |
135
|
|
|
sbsllon = 180.0 - aptime |
136
|
|
|
sbsllon = sbsllon - 360.0 * np.round(sbsllon / 360.0) |
137
|
|
|
|
138
|
|
|
return sbsllon, sbsllat |
139
|
|
|
|
140
|
|
|
|
141
|
|
|
def igrf_dipole_axis(date): |
142
|
|
|
"""Get Cartesian unit vector pointing at dipole pole in the north (IGRF). |
143
|
|
|
|
144
|
|
|
Parameters |
145
|
|
|
---------- |
146
|
|
|
date : dt.datetime |
147
|
|
|
Date and time |
148
|
|
|
|
149
|
|
|
Returns |
150
|
|
|
------- |
151
|
|
|
m_0 : np.ndarray |
152
|
|
|
Cartesian 3 element unit vector pointing at dipole pole in the north |
153
|
|
|
(geocentric coords) |
154
|
|
|
|
155
|
|
|
Notes |
156
|
|
|
----- |
157
|
|
|
IGRF coefficients are read from the igrf12coeffs.txt file. It should also |
158
|
|
|
work after IGRF updates. The dipole coefficients are interpolated to the |
159
|
|
|
date, or extrapolated if date > latest IGRF model |
160
|
|
|
|
161
|
|
|
""" |
162
|
|
|
# Get time in years, as float |
163
|
|
|
year = date.year |
164
|
|
|
doy = date.timetuple().tm_yday |
165
|
|
|
year_days = dt.date(date.year, 12, 31).timetuple().tm_yday |
166
|
|
|
year = year + doy / year_days |
167
|
|
|
|
168
|
|
|
# Read the IGRF coefficients |
169
|
|
|
with open(aacgmv2.IGRF_COEFFS) as f_igrf: |
170
|
|
|
lines = f_igrf.readlines() |
171
|
|
|
|
172
|
|
|
years = lines[3].split()[3:][:-1] |
173
|
|
|
years = np.array(years, dtype=float) # time array |
174
|
|
|
|
175
|
|
|
g10 = lines[4].split()[3:] |
176
|
|
|
g11 = lines[5].split()[3:] |
177
|
|
|
h11 = lines[6].split()[3:] |
178
|
|
|
|
179
|
|
|
# Secular variation coefficients (for extrapolation) |
180
|
|
|
g10sv = np.float32(g10[-1]) |
181
|
|
|
g11sv = np.float32(g11[-1]) |
182
|
|
|
h11sv = np.float32(h11[-1]) |
183
|
|
|
|
184
|
|
|
# Model coefficients: |
185
|
|
|
g10 = np.array(g10[:-1], dtype=float) |
186
|
|
|
g11 = np.array(g11[:-1], dtype=float) |
187
|
|
|
h11 = np.array(h11[:-1], dtype=float) |
188
|
|
|
|
189
|
|
|
# Get the gauss coefficient at given time: |
190
|
|
|
if year <= years[-1] and year >= years[0]: |
191
|
|
|
# Regular interpolation |
192
|
|
|
g10 = np.interp(year, years, g10) |
193
|
|
|
g11 = np.interp(year, years, g11) |
194
|
|
|
h11 = np.interp(year, years, h11) |
195
|
|
|
else: |
196
|
|
|
# Extrapolation |
197
|
|
|
dyear = year - years[-1] |
198
|
|
|
g10 = g10[-1] + g10sv * dyear |
199
|
|
|
g11 = g11[-1] + g11sv * dyear |
200
|
|
|
h11 = h11[-1] + h11sv * dyear |
201
|
|
|
|
202
|
|
|
# Calculate pole position |
203
|
|
|
B_0 = np.sqrt(g10**2 + g11**2 + h11**2) |
204
|
|
|
|
205
|
|
|
# Calculate output |
206
|
|
|
m_0 = -np.array([g11, h11, g10]) / B_0 |
207
|
|
|
|
208
|
|
|
return m_0 |
209
|
|
|
|